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Problem statement

We consider stochastic differential equation (SDE) of the form:

dXt = f (Xt)dt + σ(Xt)dWt , X0 = x0

where Wt is a Brownian motion and

f : R → R drift

σ : R → R diffusion

are unknown functions.

Objective

Recover the drift f and diffusion σ given a finite number of observations
coming from a single sample trajectory X := (Xtn)

N
n=1 separated by time-steps

∆tn,
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Motivation and challenges

Motivation

SDEs allow us to model systems subject to random effects and have applications
in finance, dynamical systems, engineering . . .

The problem we consider is challenging:

• The observations X come from a single trajectory.

• We make few assumptions on f and σ.

• The observations X only provide indirect information on f and σ.

• The sampling time-steps ∆tn introduce a discretization error.
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Method summary

Our method can be summarized as follows

1 Formulate our model as a computational graph with unknown functions.

2 Recover the functions using Gaussian processes by completing the graph.

3 Optimize the hyper-parameters of the Gaussian processes using
cross-validation.

Our method allows us to

• Recover f , σ at observed points (hard).

• Forecast future values of f , σ (harder).
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Modeling Assumption

Let Xn := Xtn . We assume the following discretization, the Euler-Maruyama
model given

Xn+1 = Xn + f (Xn)∆tn + σ(Xn)
√
∆tnξn + εn

where

ξn
d∼ N (0, 1) dynamics noise

εn
d∼ N (0, λ) modeling noise

are independent.
Defining Yn := Xn+1 − Xn, our model can be restated as

Yn = f (Xn)∆tn + σ(Xn)
√
∆tnξn + εn
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Computational Graph

The model

Yn = f (Xn)∆tn + σ(Xn)
√
∆tnξn + εn

can be re-stated as a computational graph:



GPs for SDEs

Motivation

Computational
Graph
Completion

Kernels learned
from data

Numerical
Results

References

Computational Graph

Yn = f (Xn)∆tn + σ(Xn)
√
∆tnξn + εn

• Arrows → represent functions.
• Nodes ◦ aggregate incoming variables.
• Xn and Yn are input and outputs.
• Blue variables are noise.
• Red variables are unknown functions we wish to recover.
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The Computational Graph Approach

Computational Graph Completion (CGC) [Owh21] proposes to replace the
unknown functions f and σ by Gaussian processes and to recover them by
Maximum A Posteriori (MAP) estimation given inputs and outputs of the graph
(Xn,Yn)

N
n=1.

We “forget” about the underlying model, we consider the data (Xn,Yn)
N
n=1 to be

inputs and outputs of the graph.
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Gaussian process prior

We assume that f and σ are distributed according to independent Gaussian
processes:

f
d∼ GP(0,K )

σ
d∼ GP(0,G ).

Definition

A function f is distributed according to a Gaussian Process with covariance
function (kernel) K : R× R → R if

f (X ) = (f (X1), f (X2), . . . , f (Xn))
d∼ N (0,K (X ,X ))

where K (X ,X ) ∈ Rn×n with entries K (X ,X )ij = K (Xi ,Xj).

The kernel function K is often parameterized by some parameter θ.
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Recovery of the drift and diffusion

The recovery of f and σ can be separated into two steps

1 Recover the values of f and σ at observed data points (Xn)
N
n=1.

2 Forecast future values of f and σ using the recovered values.

We use f̄ ∈ RN and σ̄ ∈ RN to denote the function values at the observed data
points:

f̄n := f (Xn)

σ̄n := σ(Xn).
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MAP estimation

We must first recover f̄ ∈ RN and σ̄ ∈ RN . By Bayes’ rule

p(f̄ , σ̄|Y ,X ) = p(Y |f̄ , σ̄)

independence︷ ︸︸ ︷
p(f̄ |X )p(σ̄|X )

p(Y |X )
.

As is standard, we consider the negative log likelihood. The recovery of f̄ and σ̄ is
given as the solution to the problem

f̄ ∗, σ̄∗ = argmin
f̄ ,σ̄

− ln(p(f̄ , σ̄|Y ,X )). (1)
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MAP estimation

Using our graph and our prior on f̄ and σ̄:

− ln p(f̄ , σ̄|Y ,X ) ∝ L(f̄ , σ̄) :=

− ln p(Y |f̄ ,σ̄)︷ ︸︸ ︷
(Y − Λf̄ )T (Σ + λI )−1(Y − Λf̄ ) +

N∑
n=1

ln(σ̄2
n∆tn + λ)

+ f̄ TK (X ,X )−1f̄︸ ︷︷ ︸
− ln p(f̄ |X )

+ σ̄TG (X ,X )−1σ̄︸ ︷︷ ︸
− ln p(σ̄|X )

.

where Σ is a diagonal matrix with entries σ̄2
n∆tn, and Λ is a diagonal matrix with

entries ∆tn.

The recovery of f , σ is reduced to the minimization of L(f̄ , σ̄).
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Alternative minimization

Representer theorem

For any given σ̄, the minimizer in f̄ of L(f̄ , σ̄) is

f̄ ∗(σ) := argmin
f̄

L(f̄ , σ̄) = K (X ,X )Λ
(
ΛK (X ,X )Λ + Σ + λI

)−1
Y

Using the representer theorem, and plugging f ∗(σ) into the original loss, the
minimization in σ is:

L(f̄ ∗(σ), σ̄).

The function L(f̄ ∗(σ), σ̄) is non-convex and difficult to minimize. We use a
gradient descent based method with an adaptive step size and momentum.
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Motivation

Learning the hyper-parameters θ of the kernel functions K and G can drastically
improve the performance of the recovery and prediction.

Figure: Two forecasts: non-learned kernel (left) and data learned kernel (right).

To this end, we use a randomized cross-validation approach to learn the kernels
from data.
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General principle

Randomized cross validation for kernel hyper-parameters relies on two principles

• Cross validation: optimize the model on a subset DΠ of the data and
measure the performance on a withheld subset DΠc , using some metric LCV.

• Randomized: as proposed in [OY19], sample subsets (DΠ,DΠc ) randomly
and use this noisy loss to optimize the hyperparameters θ.

The use of a random samples often leads to a choice of hyper-parameters θ which
is more robust.
We iteratively sample cross-validation sets and select the best parameters θ using
a Bayesian optimization algorithm to minimize the

LCV(θ; f̄
∗
i , σ̄

∗
i ,DΠi

) = − ln p(YΠi
|f̄ ∗, σ̄∗).
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Numerical results

For our numerical experiments, we consider several systems

dXt = sin(2kπXt)dt + b cos(2kπXt)dWt Trigonometric process.

dXt = µXtdt + b exp(−X 2
t )dWt Exponential decay volatility.

dXt = µXtdt + σXtdWt Geometric Brownian motion (GBM).

We use the Matérn Kernel with smoothness parameter ν = 5
2 :

KMatern(x , y) = σ2
(
1 +

√
5||x − y ||

l
+

5||x − y ||2

3l2

)
exp

(
−

√
5||x − y ||

l

)
.

In this case, the parameters are θ = (σ, l).
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Trigonometric process

dXt = sin(2kπXt)dt + b cos(2kπXt)dWt Trigonometric process.

Figure: The trigonometric process.
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Trigonometric process

Figure: Recovery of the drift and diffusion

Figure: Forecast of the drift and diffusion.
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Exponential decay volatility

dXt = µXtdt + b exp(−X 2
t )dWt Exponential decay volatility.

Figure: Exponential decay volatility process
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Exponential decay volatility

Figure: Forecast: non-learned kernels.

Figure: Forecast: learned kernel.
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GBM

dXt = µXtdt + σXtdWt Geometric Brownian motion (GBM).

Figure: Geometric Brownian motion
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GBM

dXt = µXtdt + σXtdWt Geometric Brownian motion (GBM).

For GBM, the linear kernel

Klinear(x , y) = σ2(x⊺y + c)

is better specified than the Matérn kernel. Optimizing the hyper-parameters yields
similar performance to a well specified kernel.

Figure: Forecast: linear kernel, non-learned kernel and learned kernel.
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Contributions

The proposed methods

• Provide a general framework to recover the drift and diffusion of SDEs using
a small number of observations.

• Provide a framework to optimize the parameters of covariance functions for
this problem.

Preprint available (to be updated) [Dar+22]

mdarcy@caltech.edu
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