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Problem statement

GPs for SDEs
We consider stochastic differential equation (SDE) of the form:

Motivation dXt = f(Xt)dt + O'(Xt)th, Xo = XO
where W; is a Brownian motion and

f:R— R drift
o: R — R diffusion

are unknown functions.

Recover the drift f and diffusion o given a finite number of observations
coming from a single sample trajectory X := (th)n’\’:1 separated by time-steps
Atny
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Motivation and challenges

Motivation

SDEs allow us to model systems subject to random effects and have applications
in finance, dynamical systems, engineering . ..

The problem we consider is challenging:
® The observations X come from a single trajectory.
® We make few assumptions on f and o.
® The observations X only provide indirect information on f and o.

® The sampling time-steps At, introduce a discretization error.



T Method summary
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Motivation

Our method can be summarized as follows
@ Formulate our model as a computational graph with unknown functions.
® Recover the functions using Gaussian processes by completing the graph.

® Optimize the hyper-parameters of the Gaussian processes using
cross-validation.

Our method allows us to
® Recover f,o at observed points (hard).

* Forecast future values of f, o (harder).
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Modeling Assumption

Let X, := X;,. We assume the following discretization, the Euler-Maruyama

model given
Xnt1 = Xn + F(Xn) Aty + 0(Xn)V/ Atnn +€n

where
¢n L N(0,1)  dynamics noise
en O N(0,))  modeling noise

are independent.
Defining Y, := Xj+1 — Xp, our model can be restated as

Yn = f(Xn)Aty + o(Xa) vV Atpén + €n
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Computational Graph

The model

Yp = f(X

n) Aty + o(Xn) vV Atnén + €n

can be re-stated as a computational graph:
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Computational Graph

Yo = F(Xa) Aty + 0(Xp) v/ Dtnbn + €0

Arrows — represent functions.

Nodes o aggregate incoming variables.

X, and Y}, are input and outputs.

Blue variables are noise.

Red variables are unknown functions we wish to recover.
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Model Yo = F(Xa) Bt + 0(Xa)\/Btnén + €1
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Graph |Emdl o

Computational Graph Completion (CGC) [Owh21] proposes to replace the
unknown functions f and o by Gaussian processes and to recover them by
Maximum A Posteriori (MAP) estimation given inputs and outputs of the graph
(Xm Yn)rl)lzl'

We “forget” about the underlying model, we consider the data (X, Yn)y:1 to be
inputs and outputs of the graph.
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Gaussian process prior

We assume that f and o are distributed according to independent Gaussian
processes:

f £ GP(0,K)
s < GP(0,G).

Definition
A function f is distributed according to a Gaussian Process with covariance
function (kernel) K: R x R — R if

F(X) = (F(X0). F(X2). ... F(Xn)) £ N (0, K(X. X))
where K(X, X) € R™" with entries K(X, X);; = K(Xi, X;).

The kernel function K is often parameterized by some parameter 6.



T Recovery of the drift and diffusion
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The recovery of f and o can be separated into two steps
Computational

Graph ©® Recover the values of  and o at observed data points (X,)N

Completion n=1-
® Forecast future values of ¥ and o using the recovered values.
We use f € RN and 3 € RN to denote the function values at the observed data
points:

fn = f(Xp)
Tn = o(Xp).

Q
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We must first recover f € RN and 7 € RV. By Bayes' rule

Computational
Graph
Completion

independence

—
- _ _ p(FIX)p(31X)
p(f,alY,X)=p(Y|f,0)———ci—.

(7.71y.X) = p(VIF.5) P RS
As is standard, we consider the negative log likelihood. The recovery of f and & is
given as the solution to the problem

f* a* :arg_min—ln(p(f,6|Y,X)). (1)

f,o



+ MAP estimation
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Using our graph and our prior on f and &:

—Inp(Y|f,5
Computational P( | ’ )
Graph
Completion

N
—Inp(F,5]Y,X) oc L(F,5):=(Y =A)(Z+ )Y = AF)+ > In(G2At, + N)
n=1

+FTK(X, X)HF+6TG(X, X) 15 .

~Inp(F|X) ~Inp(3]X)

where ¥ is a diagonal matrix with entries G2At,, and A is a diagonal matrix with
entries At,.

The recovery of f, o is reduced to the minimization of L(f, ).




Alternative minimization

Representer theorem

For any given &, the minimizer in f of £(f,5) is
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Graph

ompletion - = —1
o F*(o) := arg min L(F, ) = K(X, X)A(/\K(X,X)A +Y 4 A/) Y
F

Using the representer theorem, and plugging *(o) into the original loss, the
minimization in o is:

L(f*(0),7).

The function £(f*(c),&) is non-convex and difficult to minimize. We use a
gradient descent based method with an adaptive step size and momentum.
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T Motivation
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Learning the hyper-parameters 0 of the kernel functions K and G can drastically

improve the performance of the recovery and prediction.

Volatility test

Volatility test
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Figure: Two forecasts: non-learned kernel (left) and data learned kernel (right).

To this end, we use a randomized cross-validation approach to learn the kernels

from data.



B General principle
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Randomized cross validation for kernel hyper-parameters relies on two principles

¢ Cross validation: optimize the model on a subset Dy of the data and
measure the performance on a withheld subset Drc, using some metric Lcy.

* Randomized: as proposed in [OY19], sample subsets (Dp, D) randomly
and use this noisy loss to optimize the hyperparameters 6.

Kernels learned
from data

The use of a random samples often leads to a choice of hyper-parameters 8 which
is more robust.

We iteratively sample cross-validation sets and select the best parameters 0 using
a Bayesian optimization algorithm to minimize the

Lcv(0; f,-*, 7;:,Dn,)=—1In p(Yn,.|f*, a*).
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T Numerical results

|
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For our numerical experiments, we consider several systems

dX: = sin(2km X;)dt + bcos(2km X:)dW; Trigonometric process.

dX; = pXedt + bexp(—X?)dW; Exponential decay volatility.
dX; = pXedt + o XedW, Geometric Brownian motion (GBM).
Numerical
Results
5

We use the Matérn Kernel with smoothness parameter v = 3:

KMatern(Xa _)/) =0

— —vll? —
2(14 VA SRy Bl yily

In this case, the parameters are 8 = (o, /).



Trigonometric process
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‘ dX: = sin(2knw X;)dt + bcos(2km X;)dW;  Trigonometric process.

Trajectory

—— Train
— Test

Numerical
Results

Figure: The trigonometric process.



Trigonometric process
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Figure: Recovery of the drift and diffusion
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Figure: Forecast of the drift and diffusion.
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dX; = pXedt + bexp(—X2)dW; Exponential decay volatility.

Trajectory

—— Train
— Test

Numerical 025
Results

Figure: Exponential decay volatility process



Exponential decay volatility
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‘dXt = puXedt + o XedW;  Geometric Brownian motion

(GBM). |

Figure

Trajectory

Train
Test

: Geometric Brownian motion



)\

i GBM

GPs for SDEs

‘dXt = puXedt + 0o XedW;  Geometric Brownian motion (GBM). ‘

For GBM, the linear kernel
Klinear(xa y) = 02(XTy + C)

is better specified than the Matérn kernel. Optimizing the hyper-parameters yields
similar performance to a well specified kernel.

Numerical
Results
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Figure: Forecast: linear kernel, non-learned kernel and learned kernel.



T Contributions
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The proposed methods
® Provide a general framework to recover the drift and diffusion of SDEs using
a small number of observations.
e ® Provide a framework to optimize the parameters of covariance functions for
Results this problem.

Preprint available (to be updated) [Dar+22]

’ mdarcy@caltech.edu ‘
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