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Abstract

In this report we present and investigate the Kernel Flows algorithm, both

Parametric and Non-Parametric version. We explore their behavior and make

suggestions to maximize their performance. We also propose a modified version

of the RBF network which can be trained using the Kernel Flows Parametric

algorithm. Finally we apply KF Non-Parametric, KF Parametric and the RBF

network to standard datasets. We compare their performance and the impact

of various hyper-parameter choices on the effectiveness of the algorithms.
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Chapter 1

Introduction: Linear

Regression and the Kernel

trick

1.1 Introduction

Regression problems, the problem of predicting a continuous dependent variable

from data, form an important class of problems in the field of data science and

machine learning. One of the primary tools to solve these problems is linear

regression. A popular extension of linear regression is Kernel Ridge regression

which, thanks to the kernel trick, allows to apply linear regression to a transfor-

mation of the data without actually computing the said transformation. This

technique however depends on the specification of a Kernel and its parameters.

The choice of Kernel and associated parameters strongly impacts the perfor-

mance of Kernel regression and is often difficult without experimentation. To

tune the parameters of a Kernel, data scientists are often forced to perform

a computationally costly grid search wherein many different values of the pa-

rameter are tested. This is often very impractical if the Kernel has multiple

parameters since the search space will scale exponentially with the number of

parameters.

In this report we will explore an algorithm, called Kernel Flows, recently

proposed by Houman Owhadi and Gene Ryan Yoo in [12] which proposes to
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optimize the Kernel and its parameters using a numerical algorithm. We will

first expose in Chapter 1 the basic theory of Linear Regression and Kernel

Regression, in particular the notion of Reproducing Kernel Hilbert Space upon

which depends the algorithm. We will then in chapters 2 and 3 present the two

versions of the algorithm (Parametric and Non-Parametric) and explore their

basic properties. In 4 we will present the Radial Basis Function (RBF) network

and show how Kernel-Flows Parametric can train an extended version of the

basic RBF network. Finally, in Chapter 5 we will apply Kernel Flows to three

standard datasets.

1.2 Linear Regression and the Kernel trick

We first remind the reader of some standard results in the theory of linear

regression. Given a data set (xi, yi)
N
i=1, xi ∈ Rd, yi ∈ R, we assume that the

data is generated according to

yi = f(xi, θ) + εi (1.1)

where θ is a set of parameters. The εi are independent, identically distributed

Gaussian noise with mean 0:

εi ∼ N (0, σ2). (1.2)

The basic linear regression model ([2, p. 138]) can be written as

f(xi, θ) = φ(xi)
T θ.

Where φ(xi) is the vector of basis function φ(xi) = (φ1(xi), φ2(xi), ..., φn(xi))

and θ is weight vector. More generally:

f(X, θ) = Φθ

where Φ is the feature matrix with entries Φi = φ(xi). Given the above problem,

we define the regularized mean squared error loss function to be minimized as

follows ([2, p. 141]):

L(θ) =

N∑
i=1

(yi − f(xi, θ))
2 + λ||θ||22 (1.3)

8



The basic results of Kernel Ridge regression states that we may rewrite the

solution to the above problem as

f(x) = K(x,X)(K(X,X) + λIN )−1Y (1.4)

where K(x,X) = (K(x, x1), ...,K(x, xN )), Y = (y1, ..., yN )T and K(X,X) is

the N ×N Gram matrix with i, j entries K(xi, xj) [2, p. 293]. The function K

is symmetric, positive definite kernel (see section 1.3). The quantity K(xi, xj)

corresponds to the inner product in feature space: 〈φ(xi), φ(xj)〉.
The term λIN is a regularization term derived from the regularized MSE

loss function (1.3) and added to avoid degenerate matrices when inverting. This

regularization parameter gives the name of ”Ridge” to Kernel regression. Note

that this is equivalent to redefining the kernel used as

K ′(x, x′) = K(x, x′) + δ(x− x′)

where δ is 1 at 0 and 0 everywhere else.

For convenience, we will use the letter K to refer to both the kernel function,

and to the vector or matrix with elements determined by the kernel functions.

K(x, x′) will refer to a particular value, K(x,X) to the vector and K(X,X) to

the matrix.

1.3 Reproducing Kernel Hilbert Space

In this section we present some of the basic results of theory of Reproducing

Kernel Hilbert Space (RKHS).

We first define the positive definite kernel K mentioned above.

Definition 1.3.1. Positive Definite Kernel [15, p. 417]. A symmetric function

K : X ×X → R is a positive definite kernel if for any x1, x2, ...xN ∈ X and any

c1, c2, ...cN ∈ R:
N∑
i

N∑
j

ci, cjK(xi, xj) ≥ 0.

Equivalently, consider the matrix defined by Ki,j = K(xi, xj). Then for any

x1, x2, ...xn ∈ X the matrix K is positive definite: for all c ∈ Rn,

cTKc ≥ 0.
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We now define what a RKHS is.

Definition 1.3.2. Reproducing Kernel Hilbert Space [8, p. 4]. Let H be Hilbert

space of real functions and consider the linear functional

Lx : f 7→ f(x).

H is a RKHS if for any x, Lx is continuous over the functions f in H. In general,

the Riesz representation theorem states that there is a Kx (which is an element

of H) such that

f(x) = Lx(f) = 〈f,Kx〉H .

This is the reproducing property.

Given a kernel function K, let Kx = K(x, .) and define H0 as the linear span

of {Kx : x ∈ X}. Then the Moore–Aronszajn tells us that a kernel defines a

RKHS that is the closure of H0.

Theorem 1.3.3. Moore–Aronszajn, [8, p. 10]. Consider a symmetric, positive

definite kernel K. Then there is a unique Hilbert space H of functions such that

1. H = span{Kx : x ∈ X}

2. K(x, y) = 〈Kx,Ky〉

K is a reproducing kernel for the Hilbert Space H.

The space H above is the completion of H0 with respect to the norm induced

by the inner product

〈
n∑
i

aiKxi
,
m∑
j

ajKxj
〉 =

n∑
i

m∑
j

aiajK(xi, xj). (1.5)

.

1.3.1 RKHS and Kernel regression

We now present the representer theorem, which plays an important role in

theoretically justifying the use of Kernel regression.

Theorem 1.3.4. Representer theorem, [15, p. 419]. Consider a symmetric,

positive definite kernel and the associated RKHS H and

1. a training set (X,Y ), X ∈ Xn, Y ∈ Rn
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2. a strictly increasing function g : [0,∞)→ R

3. an arbitrary error function E(X × R2)n → R ∪ {∞}

These three elements define a loss functionf 7→ E(X,Y, f(X))+g(||f ||) 1. Then

any minimizer of the loss function

f∗ = arg minfk∈H{E(X,Y, f(X)) + g(||f ||)}

admits the representation

f∗ =

n∑
i

αiKxi. (1.6)

Setting the coefficient αi in (1.6) to ci where c = (K(X,X))−1Y yields an

function which interpolates the data point exactly, meaning that f∗(x) = y for

x ∈ X, y ∈ Y . This function is the minimizer of the loss function

1

n

n∑
i

(f(xi)− yi)2

for f ∈ H (the unregularized MSE). In the case where c = (K(X,X) +

λIN )−1Y , the function f∗ no longer exactly interpolates the points, but in-

stead minimizes the loss function

1

n

n∑
i

(f(xi)− yi)2 + λ||f ||2H .

Note that in this case, equation (1.6) is exactly equation (1.4).

Finally, we note that the interpolator function, by the definition of the inner

product in H, equation (1.5), has norm:

||f∗||2 = Y TK(X,X))−1Y.

1.4 Universal Kernels

Kernel regression requires the prior specification of a kernel and a set of param-

eters for the kernel. In this section, we address the general form of the kernel

through the notion of universal kernels, as presented in [10]. Intuitively, the

1In our case, the loss function is of the form (1.3)
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RKHS of a universal Kernel can approximate any continuous function on any

compact set.

Definition 1.4.1. Consider a set X, an arbitrary compact subset Z of X and

the set C(Z) of continuous function on Z, equipped with the supremum norm.

Let K(Z) = span{Ky : y ∈ Z} where Ky(x) = K(y, x). We say that the kernel

K is universal if for any compact set Z, for any ε > 0 and f ∈ C(Z), there is

a g ∈ K(Z) such that ||f − g||∞,K < ε.

Two universal kernels, as identified in [10] are the Gaussian kernel and the

Rational Quadratic kernel.

Definition 1.4.2. The Gaussian Kernel.

K(x, y) = exp
(
− ||x− y||

2

2σ2

)
(1.7)

where σ is the parameter to be optimized. Equivalently:

K(x, y) = exp
(
− γ||x− y||2

)
, γ > 0. (1.8)

By properties of kernels (see [2], page 296), we may also define the n-linear

gaussian kernel as

K(x, y) =

n∑
i=1

β2
i exp

(
− ||x− y||

2

2σ2
i

)
.

Note that the βi are squared to only allow positive values.

Definition 1.4.3. The Rational Quadratic Kernel.

K(x, y) = (β2 + γ||x− y||)−α, α, β, γ > 0. (1.9)

Two particular cases are α = 1, the inverse quadric kernel, and α = 1
2 , the

inverse multiquadric kernel.

Because of the universal property, these kernels are natural choices. Note

also that these kernels are Radial Basis Functions because their output only

depends on the distance between x and y. Hence they are both candidates for

basis functions in a RBF network (see Chapter 4).
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1.5 Kriging

An alternative perspective on the kernel regression problem is given by kriging,

which is a probabilistic interpration of the regression problem. In this section

we present its basic elements. .

1.5.1 Gaussian processes

The linear regression problem can be solved through a Gaussian process ap-

proach. We present here the main elements explained in [2, p. 303 onwards].

A Gaussian process is a stochastic process such that any finite collection

of its random variables has a Gaussian distribution. We again consider the

problem given by (1.1) and the associated linear model

f(X) = Φθ. (1.10)

We also place a prior on the weights

θ ∼ N (θ|0, α2IM ). (1.11)

Since f(X) is a linear combination of Gaussian variables, f(X) itself has a

multivariate Gaussian distribution and hence defines a Gaussian process. Its

distribution is entirely defined by its mean and covariance matrix, which, using

(1.11), is

E[f(X)] = ΦE[θ]

cov[f(X)] = E[f(X)f(X)T ] = ΦE[θθT ]ΦT = α2ΦΦT = Σ

Hence the covariance matrix matrix Σ has elements Σi,j = α2φ(xi)φ(xj). As

before, we may rewrite the feature maps as kernel functions: Σi,j = K(xi, xj)

where K is the chosen kernel function.

1.5.2 Gaussian Processes and Regression

As previously, we make the assumption (1.2) that the noise is normally dis-

tributed with mean 0. Then

p(Y ) = N (Y |0,C) (1.12)
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where Ci,j = K(xi, xj) + σ2δ(xi − xj). In other words, C = K(X,X) + σ2IN

The probability distribution of a new point, given all previous points (i.e. given

the training data), p(yN+1|Y ) is also Gaussian. Its mean and variance are given

by

µ(yN+1) = K(xN+1, X)TC−1Y

σ(yN+1) = (K(xN+1, xN+1) + σ2)−K(xN+1, X)TC−1K(xN+1, X).

The reader is invited to read [2, p. 306 onwards] for a more detailed derivation

of the equations above. We note that the mean of probability distribution of

yN+1 is the same as the predicted value of our kernel regressor.
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Chapter 2

Kernel Flows: parametric

version

In this chapter, we present the main ideas behind Kernel Flows, as were pre-

sented in [12]. We then explore some of its properties, notably the impact of

the sample size and regularization techniques.

2.1 An introduction to Kernel Flows

Powerful as it may be, kernel regression requires the prior specification of both

a Kernel function and a set of parameters for the Kernel. Kernel flows is an

algorithm that allows for the numerical computation of the best kernel and

comes in two forms: the parametric and non-parametric forms. Here we focus

on the parametric version. The intuition behind Kernel Flows is that a good

kernel should suffer a minimal loss when half of the data set is removed. Given a

specified kernel and set of parameters θ for the kernel, this leads to the following

algorithm:

Kernel Flows algorithm: parametric version

1. Select a batch (xib , yib) from the whole data set (xi, yi), the ib(1), ..., ib(Nb)

being a subset (which can be the whole set) of the indices {1, 2..., N}. The

batch sub-vectors are denoted Xb and Yb respectively.

2. Select a sample (xis , yis) from the batch (xib , yib), the is(1), ..., is(Ns)
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being a subset of {1, 2, ..., Nb} containing half of the indices1. The sample

sub-vectors are denoted Xs and Ys respectively.

3. Compute ∇θL(Xb, Yb, Xs, Ys, θ) where θ is the set of parameters for our

kernel and L is a loss function.

4. Adjust the parameters θ ← θ − δ∇θL(Xb, Yb, Xs, Ys, θ).

There are two versions of the loss function L:

1. The RKHS norm loss ρ:

ρ(Xb, Yb, Xs, Ys, θ) = 1− Y Ts K(Xs, Xs)
−1Ys

Y Tb K(Xb, Xb)−1Yb
. (2.1)

Let ŷ = K(Xb, Xb)
−1Yb, ẑ = ΠTK(Xs, Xs)

−1ΠYb, where Πk,j = δis(k),j

is the selection matrix. Then [12], equation (4.2) provides an explicit

expression for the Fréchet derivative of ρ

∂θiρ(θ) = − (1− ρ(θ))ŷT (∂θiK(Xb, Xb))ŷ − ẑT (∂θiK(Xb, Xb))ẑ

Y Tb K(Xb, Xb)−1Yb
(2.2)

2. The l2 norm between the batch and the prediction generated by the sam-

ple:

||Yb −K(Xb, Xs)K(Xs, Xs)
−1Ys||22. (2.3)

The RKHS loss ρ compares the performance of the interpolating function

with half the points and the interpolating function with all the points. Letting vb

be the interpolation function which sees the full batch and vs the interpolation

function which sees the sample, then ρ = ||vb−vs||2
||vb||2 with ||.|| the intrinsic RKHS

norm generated by the kernel K. In essence, minimizing ρ entails choosing

parameters such that vb and vs are close to each other in the RKHS space. See

[12], section 3, specifically equations (3.2) and (3.4) for a derivation of the form

presented here. In this report we will be primarily interested by the loss ρ.

2.1.1 Gradient descent optimizers

In the algorithm presented above, the parameter update is

θ ← θ − δ∇θL(Xb, Yb, Xs, Ys, θ)

1More generally, p×N indices, with 0 < p < 1.
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with δ being the learning rate parameter, typically a small value less than 1.

We will refer to this update rule as Stochastic Gradient Descent (SGD).

We will also consider the Nesterov momentum update, [1]:

z0 = 0

zk+1 = βzk +∇θL(θk − δβzk)

θk+1 = θk − δzk+1.

(2.4)

Nesterov momentum has an additional hyperparameter β which is typically set

to 0.9. Nesterov momentum has the feature of ”remembering” previous com-

puted gradients, stored in the zk term. These previous computed gradients, the

momentum, push the parameter in the direction of historical gradient descent

direction, not just the present gradient descent direction. This present several

advantages:

• Faster learning of the parameters.

• Momentum can help avoid local minima: by remembering past gradients,

the algorithm overshoots the local minima region.

• Momentum can help avoid some undesirable effects of the randomness of

the batch/sample selection: the effect of ”abnormal” gradients is dimin-

ished because past gradients are remembered.

However, these advantages can also be drawbacks as the randomness of the

batch/sample is sometimes beneficial to learning the best value (see section

2.2.1). Therefore in practice which optimizer is best varies, but experiments

show that SGD consistently performs well, even if Nesterov momentum does

generally lead to increased performance.

2.1.2 Implementation

We implement the kernel flows algorithm using the Python programming lan-

guage (version 3.5+). The algorithm is implemented in two different ways. The

first uses the automatic differentiation package autograd [6]. The second di-

rectly computes the Fréchet derivative that was derived in [12]. The code is

available at [5] and uses the Numpy package ([11], [17]). This code is in part

possible thanks to Gene Ryan Yoo who shared his own code with me.
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2.1.3 Computational cost

In this section, we compute the computational cost of every iteration of KF.

We assume that the computational complexity of the matrix multiplication of

matrices of dimension n ×m and m × p is O(nmp). We also assume that the

computational complexity of inverting a n×n matrix is O(n3). We also assume

that any element-wise operation on an n×m matrix (including the Hadamard

product) is O(nm).

The complexity of computing the kernel matrix isO(N3
b ) (respectivelyO(N3

s )).

Computing the derivative matrix ∂θK(Xb, Xb) has the same complexity.

Given that the kernel matrices are available, the complexity of computing ρ

is O(N3
b +N2

b +Nb +N3
s +N2

s +Ns) = O(N3
b ).

Given that the kernel matrices are available, computing ŷ requires complex-

ity O(N2
b ). The complexity of ẑ is O(NbNs +N2

s +Ns) = O(N2
b )

Finally, computing ŷT (∂θiK(Xb, Xb))ŷ has complexityO(N2
b +Nb) = O(N2

b ).

Computing ẑT (∂θiK(Xb, Xb))ẑ has the same complexity.

Therefore, computing the gradient of ρ (which includes ρ itself), has an

overall complexity of O(N3
b )2.

However, the above derivation does not take into account the complexity of

sampling uniformly without replacement from the dataset, which will depend

on the algorithm used.

2.2 Investigating of the Kernel Flows algorithm

and its properties

2.2.1 Basic examples: synthetic data sets

We now consider a synthetic data set, generated according to the Gaussian

kernel, with parameter σ = 2.0. We test the convergence of Kernel Flows with

both SGD and Nesterov Momentum.

2However, this is reliant on our assumptions, which are not always true. Specifically, very
large values within matrices can change the complexity of inversion and matrix multiplication.
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Figure 2.1: Convergence of KF for a synthetic data set with σ = 2.0, over 1000

iterations with update parameters δ = 0.1, β = 0.9.

In both cases, KF converges to the true value, although Nesterov momentum

does so much faster. We initiliazed both versions at the same value, uniformly

chosen between 0 and 1.

Initialization and convexity

We now illustrate how the initialization of the algorithm affects the convergence

of KF to the correct value. Again we consider a synthetic data set, generated

by the Gaussian kernel with σ = 10.0 and plot the ρ function with the batch

being the whole data set and a random sample of half the data set and note the

local minima at values less than 4.

Figure 2.2: Rho as a function of σ. The batch is the whole data set.
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Hence Kernel flows cannot attain the true minima at 10, if initialised below

4.

Figure 2.3: Non convergence of KF for σ = 10 when KF is initialized between

0 and 1.

We find similar results with other values of σ and accounting for the ran-

domness of the selection of both the mini-batch and the sample (as can be seen

in the following plot).

Figure 2.4: Rho function for 100 different batch/sample combinations. We note

the greater irregularity when σ is close to 0.

These results suggest that the parameter initialisation is important to con-

sider, and should be done depending on the kernel and the dataset. The reason

20



for the observed phenomena is the non-convexity of the ρ function: when the pa-

rameter is initialized near a local minima, the algorithm, like all gradient based

learning algorithms, can find itself trapped in this area. There are however

several measures that can help against this.

The Nesterov Momentum update rule, equation (2.4), can help avoid this

problem thanks to the accumulated momentum pushing the parameter outside

the are of local minima, as illustrated by figure 2.5

Figure 2.5: Convergence in the case where σ = 1.5, the Kernel is initialized at

σ = 4.2. The ρ function (left) is highly non-convex. While SGD gets trapped in

the nearby local minima, Nesterov momentum converges to the correct value,

thanks to the accumulated momentum (right).

Similar results can be achieved by reducing the size of the batch size Nb:

smaller batch sizes lead to increase variance in the ρ function and hence the

chance of a batch/sample combination with different minima from the average.

Figure 2.6 illustrates this phenomena.
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Figure 2.6: Convergence in the case where σ = 1.25, the Kernel is initialized

at σ = 4.2. The ρ function (left) is highly non-convex. Using SGD with a full

batch leads to being stuck in the local minima, whereas using a batch size of

Nb = 1
2N allows to escape the local minima (right).

Finally, using a broad range of initialization values can help finding the best

minima. These results are not systematically true, but practice shows that

adopting these measures does increase performance.

Rational Quadratic kernel

We find similar results for the Rational Quadratic kernel when the parameter

to be optimized is β.
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Figure 2.7: Convergence of β for the Rational Quadratic kernel. The true

parameter is 2.0, the initializations are 1.0 and 4.0. KF is done over 5000 and

1000 iterations respectively.

We find similar results when the parameter to be optimised is α, although

convergence is less stable.

Figure 2.8: Convergence of α for the Rational Quadratic kernel. The true

parameter is 0.5, the initializationis 2.0.

2.2.2 Convergence in the case of multiple parameters

Above we have shown that convergence is generally accurate when it comes to

finding a single parameter. However, KF does not necessarily converge to the

correct parameters when several parameters are involved.
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As a first example, consider the linear combination of Gaussian Kernels

K(x, y) = exp(−||x− y||
2

σ2
1

) + exp(−||x− y||
2

σ2
2

).

In this case, Kernel Flows does not converge to the true parameters, but instead

seems to find some equilibrium between the two values.

Figure 2.9: Non convergence to the real parameters in the case of the 2-linear

combinations of Gaussian Kernels. The true parameters are 1.5 and 0.9 and the

parameters were initialized uniformly between 0 and 1.

We observe similar results with the Rational Quadratic kernel.
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Figure 2.10: Non convergence to the real parameters in the case of the Rational

Quadratic kernel. In the first case, the true values are α = 0.5, β = 5.0, in the

second case α = 2.0, β = 3.0.

This suggests that convergence to the true parameters is initialisation depen-

dent and value dependent. However, since KF seeks to minimize the RKHS loss

(and not to find the exact parameter value), these results do not entail that KF

should not be used with several parameters. The ultimate goal is extrapolation

and regression to new data, which does not require learning exact parameters.

2.2.3 Kernel Flows and regularization

In equation (1.4), the regularization term λ serves two purposes. From a com-

putational point of view it allows for the inversion of singular or near singular

matrices. From a mathematical point of view, it adds a penalty term to the

least squares error function. Hence the choice of λ is not only a a necessary

computational tool, but an important hyperparameter which determines the

performance of the regressor.

How does KF behave with different values of λ? We illustrate the answer

through a toy data set, one generated by a sin function with added Gaussian

noise: y = sin(x) + ε, x ∈ [0, 3π], ε ∼ N (0, 3).
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Figure 2.11: Data set generated by a sin function, with added Gaussian noise.

The data set is sufficiently noisy that the regularization parameter should

be fined tuned to prevent overfitting. We now use kernel flows to fit the RBF

kernel to the training data, σ2 is initialized to be the variance of the L2 norms

of the data points and is optimized over 10000 iterations using the Nesterov

optimizer. We do so three times, with high, medium and low regularization:

λ = 10−2, 10−5, 10−10. Figure 3.1 illustrates how the different regularizations

yield different values of σ2

Figure 2.12: Evolution of σ and the predicted functions for different values of

regularization.
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However, the mean squared error between the true function and the pre-

dicted function is lowest with the value predicted by the low regularization

version of the algorithm (MSE = 0.082, 0.081, 0.041 for high, medium, low

regularizations). Moreover, while the medium and high regularization kernels

can improve in performance by subsequently tuning λ parameter (typically by

lowering), the low regularization kernel seems to perform best using the original

λ.

This suggests that Kernel Flows acts as a natural regularizer: while low

regularization implies that the kernel can exactly interpolate the training points,

the rho function and the randomness of the batch/sample pair encourages the

kernel to generalize.

2.3 The ρ function

The above considerations warrant an investigation into the ρ function. Note

that ρ is a deterministic function of the random variables Xb, Yb, Xs, Ys. We

first make the obvious observation that ρ is non-convex (see Figure 3.1). Hence

we cannot hope to systematically find the true minima. There are two standard

measures which we adopt to mitigate this problem: first the randomness of the

batch/sample selection, second the use of momentum in our gradient descent

optimizer (such as Nesterov momentum). In general, increase randomness in

batch/sample selection could help avoid local minima through the higher vari-

ance of ρ evaluated at any specific batch/sample combination. This suggests

the use of smaller batch and samples.

We now examine how ρ changes depending on the sample size and the in-

trinsic noise of the dependent variable.

2.3.1 ρ and noise

For these tests, we use the same data set as in Section 2.2.3:

yi = sin(xi) + εi, εi ∼ N (0, σ2) (2.5)

We consider three values of σ = 0, 0.01, 0.1, 0.3 and compute ρ for 100 samples

(the batch is the whole data set). The figures below illustrate the results:
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Figure 2.13: The data set and associated rho function for different values of

the noise parameter, = 0, 0.01, 0.1, 0.3. The shaded area is the one standard

deviation.

Noise does not only change the minimum of the ρ function, but also its shape:

greater noise flattens out the function. Thus, noisier data means a smaller

difference between kernels and slower learning of the optimal parameters θ.

2.3.2 ρ and sample size

The ρ function also depends on the size of both the batch and the sample. In the

original paper [12], the size of the sample is set to the arbitrary quantity Ns =

Nb/2, with Nb left as a hyper parameter. We wish to consider the generalized

case where Ns = p×Nb, 0 < p < 1. This warrants an investigation into behavior

of ρ depending on the sample size.

In this section we consider the case where Nb = N and the Gaussian kernel

K(x, x′) = exp(− ||x−x
′||2

2σ2 ). The data set is generated by Y = sin(X), X ∼
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U(0, 3π), for 100 data points. We do not add noise. To investigate the relation

between ρ and Ns, we compute ρ over the interval [4, 15], with a spacing of 0.1.

We do so for Ns = p×Nb, p = 0.25, 0.5, 0.75, each for 100 sample selections and

compute the mean value over the interval, as well as the one standard deviation.

The results are presented below.

Figure 2.14: The rho function for different values of p. The shaded area is the

one standard deviation.

We make three observations, one trivial and two informative. First, observe

that smaller values of p lead to larger values of ρ. This is obvious since fewer

points leads to a worse interpolating function. Second, ρ appears to have similar,

albeit slightly different, minima and maxima. Finally, notice how bigger values

of p lead to a smoother function, while smaller values lead to greater change: this

seems to be because smaller values of p help accentuate the difference between

Kernels.

These observations support the following hypotheses. First, there is no a

priori best value for p: choosing any of the three values 0.25, 0.50.75 would lead

to a similar optimized parameter. Second, speed of training may be impacted

by the choice of p: since smaller choices of p lead to greater changes in the values

of ρ, this will affect its gradient. This second hypotheses is supported by figure

(2.3.2): the size of the gradient varies depending on the choice of p. Moreover,

near local minima/maxima, ∂θρ seems to take smaller values.
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Figure 2.15: The absolute value of the gradient of the rho function for different

values of p. The shaded area is the one standard deviation.

However, if the sample proportion is too small, this can have the opposite

effect: differences between Kernels become smaller and ρ flattens out, as illus-

trated by 2.16

Figure 2.16: The rho function for different values of p. The data is generated

by a Gaussian Kernel with σ = 1.25.

These observations suggests that the use different values of p for better

performance and for a scheme to select a good value p, which we will discuss in

the next section.
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2.3.3 Sample size adjustments

In the original paper, the sample size is chosen to be Ns = 0.5×Nb. The choice

of 0.5 is mostly arbitrary, but reflects the need for a kernel to generalize. In this

section, we propose a modification of the original algorithm, based on changing

the sample size Ns throughout training.

As was seen in the previous sections, both p and the intrinsic noise of the data

affect the shape of ρ. Smaller values of p can increase |∂ρ| in regions far away

from local minima/maxima. Conversely, in the region of a local minima/maxima

|∂ρ| seems to increase with p. This suggests that when our kernel is bad we

should select a small value of p, but when our kernel is good we should select a

large value for p. We therefore propose to start with small values of p, such as

0.1 or 0.2, and to gradually increase p through training, up to the original 0.5.

There are two versions of the proposed adaptive rate.

An additional benefit is that if ρ becomes smoother when the intrinsic noice

of the data set is high, then using smaller values of p can help alleviate slow

training with noisy datasets.

Finally, smaller values of p encourage greater generalization.

Linear increase

The first version we refer to as linear increase. It consists simply of choosing

an interval [pmin, pmax], where 0 < pmin < pmax ≤ 1. The proportion p of the

sample size is chosen at each step so as to increase linearly throughout training.

Dynamic sampling

The second version is to adapt the p value based on ρ:

p =
1

2
(1− E[ρ0.5])

where ρ0.5 is the ρ function computed using a the standard half batch for the

sample. The reasoning behind this choice is that E[ρ0.5] provides the measure

of performance of our Kernel. Note that p increases when ρ decreases and that

0 ≤ p ≤ 0.5. Large values of E[ρ0.5] indicate a bad Kernel which should use

a small proportion to accelerate training and push it quickly towards values

that promote generalization. Smaller values of E[ρ0.5] indicate a good kernel

which should use a proportion close to 0.5, to conform to the original proposed

proportion. In practice, we would also impose a minimal value of p.
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Moreover, since E[ρ] isn’t available to us and changes throughout training,

we will use at each iteration n

pn =
1

2
(1− 1

k

n−k∑
i=n

ρi)

where k is some hyperparameter and ρi is the measured value of ρ0.5 at iteration

i. This has the disadvantage of incurring a higher computational cost, however

since ρ0.5 and ρp have common elements (specifically the term ||vb||2), in practice

this change does not incur a significant computational cost. Note that we do

not use ρp to compute pn because this can easily leads to no adaptive behavior

in the sample size: a small sample size leads to a high ρ which leads to small

sample size and so on.

Finally, it is also possible to set p to some static quantity less than 0.5.
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Chapter 3

Kernel Flows:

non-parametric version

3.1 Introduction: presentation of the algorithm

In this section we quickly summarize the non-parametric version of Kernel Flows

derived in [12].

The non-parametric version of Kernel Flows is based on the same premise

as the parametric version: to measure the efficacy of the kernel through a loss

function L depending on half of the points. However, instead of perturbating the

kernel parameters in the direction of gradient descent of L, the non-parametric

version perturbs the points in the direction of gradient descents of L.

More precisely, given a prior kernel K, the goal of KF non-parametric version

is to learn kernels of the form:

Kn(x, x′) = K(Fn(x), Fn(x′)) (3.1)

where

F1(x) = x (3.2)

Fn+1(x) = Fn(x) + εn+1Gn+1(Fn(x)). (3.3)

Note that this is still a kernel by basic properties of kernels ([2, p. 296]). This
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is equivalent to learning a hierarchy of kernels defined by

Kn+1(x, x′) = Kn(x+ εnGn+1(x), x+ εnGn+1(x′)). (3.4)

The functions Fn are referred to as the flow. The non-parametric versions

of kernel flows therefore learns a new kernel Kn, from the base kernel K, by

iteratively perturbing the points by some value Gn(x) which depends on the

position of the points at iteration n. The value Gn(x) is in fact chosen at

iteration n to be the direction of gradient descent of L(K,Xb, Yb, Xs, Ys, θ),

which depends on the base kernel K and will be ρ defined by (2.1). Note that

εn will in general depend on n.

The algorithm can be summarized as follows. For each data point xi denote

xni = Fn(xi), the point at iteration n of the flow, and let Xn be the whole

data set at iteration n of the flow. For each point xi denote gni = Gn(xni ), the

perturbation computed at iteration n, and let Gnb be the vector of perturbations

of the batch.

Kernel Flows non-parametric version:

1. Choose a base kernel K.

2. Select a mini-batch (Xn
b , Y

n
b ) (which can be the whole data set) and as-

sociated sample (Xn
s , Y

n
s ).

3. Compute gni = −∂xn
i
L(K,Xn

b , Y
n
b , X

n
s , Y

n
s , θ) for each data point in Xn

b .

4. Compute Gn(xi) = K(xni , X
n
b )(K(Xn

b , X
n
b ))−1Gnb for the data points not

in Xn
b . In other words compute the perturbations of the data points not

in the batch by interpolation through the base kernel K.

5. Adjust the points by Fn+1(xi) = xn+1
i = xni + εng

n
i

6. Repeat steps 2-5.

7. To generate a prediction, use the kernel defined byKN (xi, xj) = K(xNi , x
N
j ) ==

K(FN (xi), FN (xj)).

Since L = ρ, equation (6.5) of [12] gives an explicit formula for−∂xn
i
L(Xn

b , Y
n
b , X

n
s , Y

n
s , θ).

Letting ŷnb = K(Xn
b , X

n
b )−1Yb, ẑnb = (Πn)T (K(Xn

s , X
n
s )−1)(Πn)Yb, we have

gni = 2
(1− ρ) ˆynb,i(∇xi

K(xni , X
n
b )ŷnb − ˆznb,i(∇xi

K(xni , X
n
b )ẑnb

Y Tb K(Xn
b , X

n
b )−1Yb

(3.5)
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Note that Kernel Flows depends on the base kernel K through the flow in

two important ways.

• L (and the Gn) depend on K. Therefore the hierarchy of kernels (3.4) can

only modify the original kernel through linear perturbations dependent on

K at every iteration.

• The perturbations gni of the points not in Xn
b depend on interpolation by

the kernel K. Notably, the perturbations of test set are only done through

interpolation by the kernel K.

Hence choosing a good kernel K (and good parameters θ) greatly affects the

final kernel KN . One possible solution to choosing good parameters θ is to use

Kernel Flows parametric to optimize θ.

3.2 The choice of ε

Unlike the parametric version of Kernel Flows (and many gradient based al-

gorithms), ε cannot be simply set to some small value. Instead we choose the

perturbations depending on the data set. Two common choices (originally pro-

posed in [12]) are

• Choose εn at every step n such that the absolute translation is less than

some specified learning rate α: maxi ||εngni || ≤ α.

• Choose εn at every step n such that the relative translation is less than

some specified learning rate α: maxi
||εngni ||
||xn

i ||
≤ α.

At inference time, we propose three choices for the εn of the test set:

1. Use εtrainn , the same as the training set at every step.

2. Calculate εtestn at every step, based on the test set but using the same rule

as the training set.

3. Use min{εtrainn , εtestn }.

On synthetic datasets options 2 and 3 perform the best, with option 3 per-

forming slightly better. On real datasets, option 3 significantly outperforms the

other two.
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3.2.1 Computational cost and implementation

Under the same assumptions as the ones presented in the KF Parametric version,

the computational complexity of computing the gradient is similar, but now

depends on the dimension of each point within the dataset x ∈ Rd. This follows

from the fact that ∇xiK(xni , X
n
b ) has dimension d × Nb. All other quantities

being identical, using what was derived in section 2.1.3, we deduce that the

overall complexity of the algorithm is O(dN3
b ).

The implementation is done using the same numpy package as in the Para-

metric case ([11], [17]) and is also available at [5].

3.3 Non parametric Kernel Flows and brittle-

ness

One of the properties of the non-parametric version of Kernel Flows is its ap-

parent sensitivity to small changes in the training set and hyper-parameters.

We illustrate this property through the Swiss roll cheesecake data set, first pre-

sented in [12], pictured below. The points are labelled yi = ±1, depending on

the spiral.

Figure 3.1: Swiss roll cheesecake, with 120 points.

We first train kernel flows with the Swiss roll 120 points. The base kernel
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K is the RBF kernel with parameter σ = 2.0 and ε = 20% (a large value). We

train for 10000 iterations.

Figure 3.2: The flow transformation with 120 points, ε = 20%.

Kernel Flows quickly linearly separates the data set. We repeat the proce-

dure, but this time with 80 points (40 points in each spiral instead of 60).

Figure 3.3: The flow transformation with 80 points, ε = 20%.

In this case, the data set is not linearly separated. This can be solved by

reducing the hyperparameter ε = 10%. However, since the learning rate is

smaller, this also requires to increase the number of iterations.

Figure 3.4: The flow transformation with 80 points, ε = 10%.

In this case, the data is linearly separated after 35000 iterations. Moreover,

the final configurations is different from the 120 points version.
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Finally, we go back to the 120 point version, ε = 10%, but with σ = 5.0.

Training is done over 30000 iterations.

Figure 3.5: The flow transformation with 120 points, ε = 10% σ = 5.0.

In this case, the data is never linearly separated. Further tests show that

linear separability does occur with σ = 3.0, but not with σ = 4.0.

These tests illustrate how the initial choice of kernel can have an enormous

impact on the performance of the algorithm. It is therefore advisable to first

optimize the parameters of the base kernel through Kernel Flows parametric

version. Moreover, small changes in the dataset may require careful adjustments

of the learning rate to achieve the desired result. It was noted in [12], section

8.1, that KF can use the britelness of deep learning to its advantage. The above

examples suggests that Kernel Flows is also vulnerable to small changes in the

original dataset.

3.3.1 On the importance of regularization

Recall that when discussing the non-parametric version of Kernel flows, we

observed that different values of the regularization parameter λ lead to different

optimized kernels. In this section, we show how regularization also greatly

impacts the effectiveness of KF Non-parametric.

We first consider the case of a linear data set and the linear kernel. We expect

that KF would not modify the data set since it already is perfectly interpolated

by the base kernel.
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Figure 3.6: The flow transformation with a line and linear kernel for the base

kernel. Left is λ = 0.01, right is λ = 0.00001. Some points on the right are

”ejected”.

We do get the expected behavior when we use λ = 0.01, but with smaller

values, some points are occasionally ejected from the line. This behavior was

first noted in [12] for the swiss roll dataset.

However, the effect of λ is not simply limited to the behavior of a few data

points. We reconsider the swiss roll data set of the previous section and KF

with a Gaussian base kernel, with σ = 4.0. Such a value does not linearly

separate the data set and leads to behavior similar figure (3.3), when λ = 10−5.

Increasing λ to 0.01 can lead to the data being linearly separated, but using a

higher value 0.1 can lead to the algorithm reverting its behavior. The dataset

does not contain any intrinsic measurement noise, which is generally the reason

to utilize regularization.

Figure 3.7: The swiss roll transformed for λ = 10−5 (left), λ = 0.01 (middle),

λ = 0.1 (right).
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Note however that this behavior is inconsistent: even with λ = 0.01, the

data will sometimes exhibit behavior similar to low regularization.

This behavior seems to be a case of the underfitting/overfitting problem.

When we optimized σ through kernel flows non parametric, our base kernel fit

the data very well. Moreover, as was seen in the section discussing KF and

regularization, the parameter σ is optimized so that the kernel was intrinsically

regularized. In the case where σ = 4.0 we have a bad base kernel which lends

itself to overfitting the data when regularization is too low, but underfitting the

data when regularization is too high.

We also note that in all these tests, we have used the full data set for the

batch and therefore do not need to find the perturbation for the data points

outside the batch. The problems exhibited by a bad kernel on the flow are

magnified when this is the case.

3.4 Bad kernels and kernel flows

The previous observations highlight the need for a good base kernel for Kernel

Flows to work well. In this section we layout strategies to ensure a good base

kernel and to limit the effects of the fragility of Kernel Flows.

The first two are straightforward from the previous sections:

• Optimize the base kernel through Kernel Flows Parametric.

• Optimize the regularization parameter.

The next will be discussed in the next section and is a hybrid approach

between the parameteric and non-parametric versions of kernel flows, which

adapts both the flow and the base kernel parameters θ

3.4.1 Kernel Flows: a hybrid approach

In this section we present the hybrid approach, which combines both versions

of Kernel Flows. The motivation behind this version is the simple observations

that bad base kernel K is bad on two fronts:

• In determining gni = ∂xn
i
ρ

• In computing Gn(xi) through interpolation of the perturbations gni
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This suggests that we should use the parametric version of Kernel Flows to

optimize the parameters θ. We propose that not only should we do this before

using KF non-parametric, but to also adapt the parameters of the base kernel K

throughout the flow transformation. This leads to a hybrid approach between

the parametric and non-parametric versions:

1. Select (Xn
b , Y

n
b ) (which can be the whole data set) and (Xn

s , Y
n
s ).

2. Compute gni = −∂xn
i
L(K,Xn

b , Y
n
b , X

n
s , Y

n
s , θ) for each data point in Xn

b .

3. Compute ∇θL(Xb, Yb, Xs, Ys, θ).

4. Adjust the points by xn+1
i = xni + εng

n
i .

5. Adjust the parameters θ ← θ − δ∇θL(Xb, Yb, Xs, Ys, θ).

The proposed approach leads to learning kernels of the form

Kn(x, x′) = Kθn(Fn(x), Fn(x′)). (3.6)

We now illustrate the benefits of such an approach, through the swiss roll

data set.

First we consider the Gaussian kernel with σ = 4.0 and low regularization.

Recall that this is a bad kernel. While the data is not linearly separated, it is

arranged in lines following the classes, figure 3.8. These results can be replicated

with larger values of σ or when using half of the data set for each batch, figure

3.9.

Figure 3.8: Swiss roll transformed with σ = 4.0, non-parametric (left), hybrid

version (middle) and the parameter history (right).
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Figure 3.9: Swiss roll transformed with σ = 5.0 (left), σ = 8.0 (middle) and

σ = 4.0 with half the points in a batch (right).

But is the hybrid version simply correcting a bad kernel which could’ve

been better selected to begin with? This time we use kernel flows with a good

kernel where σ is optimized first through the parametric version of Kernel Flows.

While both versions exhibit similar behavior, the hybrid version seems to linearly

separate the data slightly faster ( Figure 3.10. Moreover, the parameter σ never

stops evolving, despite being optimized a priori. This suggests that the hybrid

version is doing more than simply correcting a bad base kernel and instead is

adapting σ to the flow functions Fn.

Figure 3.10: Swiss roll transformed with σ2 = 2.0 (left), σ2 = 2.0 hybrid version

(middle) and the parameter evolution for the hybrid version (right).
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Chapter 4

Radial Basis Networks and

Kernel Flows

In this chapter we present the Radial Basis Function network. We then propose

a modification of the original RBF network which is a Kernel Regression model

using a linear combination of kernels. This modified network can be trained

using Kernel Flows parametric version.

4.1 Introduction to Radial Basis Netwroks

The standard Radial Basis Function (RBF) network can be represented through

the function:

φ(x) =

k∑
i=1

wiρ(||x− µi||,σi) (4.1)

where the µi represent the centroids of the RBF function and the σi repre-

sent any other parameter of the RBF functions [3, p. 2]. These can be constant

throughout all RBF functions, σi = σ. We will consider functions ρ of the form

of the Gaussian kernel (1.7) and the Rational Quadratic Kernel (1.9). This can

be schematized as follows:
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Where W represents the weights wi.

A particular case of this architecture is when we wish to interpolate exactly

each point in the training data set (xi, yi)
N
i=1. In this case, the network architec-

ture contains N RBF functions and µi = xi: each RBF function is centered on

one training data point. In such a case the weights wi are uniquely determined

and the equation for a new data point takes the familiar form (writing K(x, x′)

for ρ(||x− x′||)):
φ(x) = K(x,X)(K(X,X))−1Y

where K(x,X) = (K(x, x1), ...,K(x, xN )), Y = (y1, ..., yN )T and K(x,x) is the

N × N Gram matrix with i, j entries K(xi, xj), [3, p. 3]. Therefore our RBF

network is simply kernel regression with kernel K = ρ. This can be regularized

by:

φ(x) = K(x,X)(K(X,X) + λIN )−1Y.

4.2 Properties of RBF networks

One of the many useful properties of the RBF network is that it possesses

properties of universal approximation.

Theorem 4.2.1. Universal Lp(Rd) approximation of RBF networks, [13]. The

family of networks defined by equation (4.1), with constant parameter σ, is dense

in Lp(Rd), for all ∈ [1,∞).

Note that the above theorem requires the specification of an arbitrary num-

ber of centroids µi. Generally, these centroids are determined through some
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unsupervised learning method such as clustering. The weights are then trained

through some supervised learning method such as gradient descent [16]. Hence

it may be more practical to use every point in the data set as a centroid and to

optimize a single smoothing factor σ. In this case, the RBF network reduces to

the usual kernel regression and the weights can be determined explicitly by the

standard theory of Kernel Regression.

4.3 A multilayer RBF network

4.3.1 Equations and architecture

We now propose a multilayer version of the above architecture. The equation

for this network is:

φ(x) =

N∑
i=1

wi

( l∑
j=1

αjρj(||x− xi||,σj)
)

(4.2)

where αj ≥ 0. The network architecture is based on the following property of

kernels: if K1 and K2 are kernels, then K(x, x′) = c1K1(x, x′) + c2K2(x, x′) is

also a kernel, where c1, c2 > 0. Hence (4.2) is equivalent to

φ(x) =

N∑
i=1

wiK(x, xi) (4.3)

with

K(x, xi) =

l∑
j=1

αjρj(||x− xi||,σj) (4.4)

Note that the ρj can be of the same or different forms (e.g. they can all be

Gaussian kernels or Rational Quadratic kernels or a mix of both). Equation

(4.3) can be solved in the usual manner with kernel regression using the kernel

defined above.

This can also be thought of as multilayer version of the RBF network, where

we denote Ki = K(x, xi):
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K2

KM

y

Input

layer

RBF function

layer

Kernel

layer

Output

layer

W (1) W (2)

We note that W 1 contains the αj weights, which act on the outputs of each

ρi neurons, and W 2 contains the wj weights, which act on the Ki neurons as

a whole. Each ρ neuron can be through of as further containing l sub-neurons,

ρ
(j)
i . Each ρ

(j)
i sub-neuron is associated with the same RBF function across all

ρi neurons, i.e. ρji and ρjk share the same activation with the same parameters,

save for the centroid which is dependent on ρi.

4.3.2 Advantages of the proposed approach

We highlight two advantages of the proposed architecture. These follow from the

fact that the network is not a network in itself, but a form of kernel regression

using the combination of kernels.

First, the network contains few learned parameters. Because the centroids

and the linear weights are determined from the data set, the number of param-

eters only depends on the number of basis functions chosen for the kernel. In

the case of the Gaussian the number of learned parameters is 2 × n where n

is the number of chosen basis functions. In the case of the Rational Quadratic

kernel, the number of parameters is 3× n.

The second is that the Kernel Flows algorithm can be used to train the

network.
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4.3.3 Training

The above architecture presents significant benefits: the number of basis func-

tions K, the weights W (2) and the centroids ci = xi are entirely determined

by the training data (hence the kernel layer is not a hidden layer in the usual

neural network sense). The parameters to be trained are σj and W (1). The

number of RBF functions ρ is a hyperparameter.

For training, we use the parametric version of the Kernel Flows algorithm,

with the kernel defined by (4.4).

The initialization of the parameter can be random. However in the case

where ρ is the Gaussian kernel, σ can be initialized to the variance of the norms

of the training points (xi)
N
i=1. The αj are initialized randomly between 0 and

1.
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Chapter 5

Applications to real data

sets

In this section we implement KF for applications to three standard data sets.

Two are available from the Scikit Learn Python library [14]: the boston housing

dataset [9] and the diabetes dataset. The last one is a dataset available from

the UCI Machine Learning Repository [7]: the Wine quality dataset [4].

5.0.1 Setup

To test the performance of the Kernel Flows arlgorithms, we will use a 5-fold

cross validation, meaning that the data set is split into 5 segments and KF is

run with 4 segments as training set and the last segment as test set. This is

repeated 5 times so that each segment is used once as a test set. The performance

is recorded for each run and averaged. We do this for several hyper parameter

choices.

In each case we train the kernel flows algorithm over 10 000 iterations, with

the Gaussian kernel. We initialize the σ parameter to the values 1, 100, 500, 1000,

the ”natural variance” σ̂ = V ar(Xnorm) where Xnorm is the squared norm of

each data point, and, as in [12], σMSD such that 1
2σ2 is equal to the mean

squared distance between data points. In each case, regularization λ is first

tuned using the initialization value. We do the same for the Rational quadratic

kernel, with initialization values α = 0.5, β = 1.0. In all cases presented we used

the Nesterov momentum update rule, unless specified, as it generally performed

the best.
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For KF non-parametric version, we use the σ parameter with the lowest

MSE, based on the KF parametric version, which we will denote as σopt.

For the parametric version ρ and its gradient is computed using a batch of

size of 100. For the non-parametric version we also train the algorithm with

larger batch sizes, but for a reduced number of iterations. We first present the

setup of the experiments, then provide tables with the best results. The best

result is highlighted in bold and the errors on the training data is in parenthesis.

Finally we discuss the results and provide interpretations.

In all cases we do not pre-process the data.

Performance metrics

We will use two main performance metrics, the mean squared error and the

mean absolute error. The Mean Absolute Error (MAE) is defined as

MAE =
1

N

N∑
i=1

|yi − ŷi| (5.1)

where yi is true dependent value of the ith sample and ŷi the predicted dependent

value. The Mean Squared Error (MSE) is defined as

MSE =
1

N

N∑
i=1

(yi − ŷi)2. (5.2)

Compared to the MAE, the MSE punishes large errors, but reduces errors less

than one. Hence, while the MAE is easier to interpret, the MSE can indicate if

very large errors occur.

We also run the same experiments for the RBF network/kernel regression

with a linear combination of Gaussian kernels which was proposed in chapter 4.

We train the network for 10000 iterations with the same 5-fold cross validation

as the Kernel Flows Parametric and Non-Parametric. We will use three basis

functions which we initialize to parameters σ = 1.0, 5.0, 10.0 respectively.

5.0.2 Boston Housing data set

Description

The data set consists of 506 data points, with dimension 13: X ∈ R506×13. The

features are attributes of houses in an area, such as the per capita crime rate of
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the town or the average number of rooms per house. The target values range are

the median price (in thousand of dollars) of the homes in the are. The target

values range from 5 to 50, with a mean of 22.53 and a variance of 84.4.

Results

Table 5.1: KF Parametric version

Method MSE MAE

Gaussian, σ = σ̂ 34.363 (7.564) 4.009 (1.881)

KF Gaussian, σ = σ̂ 32.876 (11.59) 3.901 ((2.356)

KF Gaussian, σ = σ̂ with dynamic sampling 30.738 (10.264) 3.763 (2.214)

Rational quadratic, α = 0.5, β = 1.0 126.024 (0.0) 7.942 (0.0)

KF Rational quadratic, α = 0.5, β = 1.0 72.407 (0.0) 5.662 (0.0)

KF Rational quadratic, α = 0.5, β = 1.0 with dynamic sampling 72.019 (0.0) 5.717 (0.0)

Table 5.2: KF Non-Parametric version. In all cases, ε = 0.1%.

Method MSE MAE

Gaussian Kernel, σ = 501.4 47.830 (28.406) 4.978 (3.825)

Gaussian Kernel, σ = 501.4, hybrid version 48.187 (28.230) 5.005 (3.823)

Gaussian Kernel, σ = 501.4, full dataset 39.603 (26.02) 4.501 (3.642)

Gaussian Kernel, σ = 501.4, full dataset, hybrid version 40.083 (26.07) 4.523 (3.651)

5.0.3 Diabetes data set

Description

The data set consists of 442 data points, each with 10 features: X ∈ R442×10.

The features are characteristics of patients such as sex and age. The target

values, which correspond to the disease progression, range from 25 to 346, with

a mean of 152.13 and a variance of 5929.88.
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Results

Table 5.3: KF Parametric version.

Method MSE MAE

Gaussian Kernel, σ = 10 2936.088 (2519.247) 43.367 (40.228)

KF Gaussian Kernel, σ = 10 2911.321 (2664.77) 43.559 (41.593)

KF Gaussian Kernel, σ = 10 with dynamic sampling 2909.619 (2656.92) 43.551 (41.53)

Table 5.4: KF Non-Parametric version. In all cases ε = 1%.

Method MSE MAE

Gaussian Kernel, σ = σopt 3063.7876 (1560.291) 45.4709 (32.699)

Gaussian Kernel, σ = σopt, hybrid version 3057.3552 (1561.337) 45.4198 (32.69)

5.0.4 Wine quality data set

Description

The Wine quality data set was first used in [4]. The features are 11 characteris-

tics of wine such as pH and sugar. The target values are grades corresponding

to the perceived quality of the wine by wine tasting expert, ranging from 1

to 10 (10 being the highest grade). There are two sub-datasets, one for red

wine and the other for white wine. Denote (Xr, Yr) the data set of the red

wine and (Xw, Yw) the data set of the white wine. We have Xr ∈ R1599×11,

Xw ∈ R4898×11. Yr has mean 5.63 and variance 0.65. Yw has mean 5.88 and

variance 0.78.

Because the range of Y is restricted to [0, 10] we will also restrict any pre-

diction to this range, meaning that any value outside will be rounded down to

10 or up to 1.
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Results

Red wine

Table 5.5: KF Parametric version.

Method MSE MAE

Gaussian, σ = 500.0 0.442 (0.424) 0.512 (0.503)

KF Gaussian, σ = 500.0 0.4202 (0.3917) 0.503 (0.487)

KF Gaussian, σ = 500.0, with dynamic sampling 0.4202 (0.3917) 0.503 (0.487)

Rational quadratic, α = 0.5, β = 1.0 0.717 (0.0) 0.643 (0.0)

KF Rational quadratic, α = 0.5, β = 1.0 0.6412 (0.0) 0.609 (0.001)

KF Rational quadratic, α = 0.5, β = 1.0, with dynamic sampling 0.577 (0.0) 0.587 (0.002)

Table 5.6: KF Non-Parametric version. In all cases ε = 1%.

Method MSE MAE

Gaussian Kernel, σ = σopt, Nb = 100, 10000 iterations 0.554 (0.238) 0.592, (0.375)

Gaussian Kernel, σ = σopt, Nb = 300, 1000 iterations 0.487 (0.28) 0.542 (0.41)

Gaussian Kernel, σ = σopt, Nb = 100, 10000 iterations, hybrid version 0.55, (0.236) 0.589 (0.374)

Gaussian Kernel, σ = σopt, Nb = 300, 1000 iterations, hybrid version 0.489, (0.283) 0.541, (0.412)

White wine

Table 5.7: KF Parametric version.

Method MSE MAE

Gaussian, σ = 500.0 0.571 (0.54) 0.594 (0.578)

KF Gaussian, σ = 500.0 0.5631 (0.523) 0.588 (0.567)

KF Gaussian, σ = 500.0, with dynamic sampling 0.5631 (0.523) 0.588 (0.567)

Rational quadratic, α = 0.5, β = 1.0 0.728 (0.0) 0.668 (0.0)

KF Rational quadratic, α = 0.5, β = 1.0 0.682 (0.0) 0.618 (0.0)

KF Rational quadratic, α = 0.5, β = 1.0, with dynamic sampling 0.692 (0.0) 0.656 (0.002)
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Table 5.8: KF Non-Parametric version. In all cases ε = 1%.

Method MSE MAE

Gaussian Kernel, σ = σopt, Nb = 100, 10000 iterations 0.668 (0.518) 0.631 (0.552)

Gaussian Kernel, σ = σopt, Nb = 300, 1000 iterations 0.641 (0.532) 0.624 (0.552)

Gaussian Kernel, σ = σopt, Nb = 100, 10000 iterations, hybrid version 0.676, (0.517) 0.635 (0.55)

Gaussian Kernel, σ = σopt, Nb = 300, 1000 iterations, hybrid version 0.62 (0.602) 0.619 (0.609)

Cortez et al.in [4] reported the best results using the MAE of 0.46 and 0.45

using SVM on these data sets. Moreover they reported errors of 0.50/0.59 and

0.51/0.58 using polynomial regression and neural networks respectively. These

results suggest that KF Parametric performs as well as polynomial regression.

5.1 RBF network results

Table 5.9: RBF Network.

Dataset MSE MAE

Boston Housing Dataset, untrained network 403.054 (0.0) 17.014 (0.0)

Boston Housing Dataset, trained network 110.94 (0.0) 7.631 (0.0)

Diabetes untrained network 2912.837, (0.0) 43.356 (0.007)

Diabetes, trained network 2885.161, (2639.445) 43.050 (40.120)

Red wine, untrained network 0.848 (0.0) 0.668 (0.007)

Red wine, trained network 0.66, (0.0) 0.625 (0.0)

White wine, untrained network 0.8855, (0.0) 0.702 (0.005)

White wine, trained network 0.642, (0.0) 0.630 (0.0)

5.2 Result interpretation

In this section we interpret the results of our numerical experimentations.
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5.2.1 Kernel Flows Parametric

5.2.2 Parameter initialization

We first observe that the parametric version of Kernel Flows generally performs

well and improves on Kernel Linear Regression with same initial parameter.

However we note that the effectiveness of KF parametric depends on the initial

set of parameters. For example, for the Boston Housing dataset, an initial choice

of σ = σ̂ improves kernel regression from 34.363 to 32.876 (an improvement of

4.3 %). On the other hand, when the parameter is initialized at σ = 500, the

MSE goes from 31.108 to 31.112 (no change). Hence the parameters should

be carefully initialized, depending on the specific problem. In general it is

recommended to choose a broad number of values from which to initialize the

algorithm.

5.2.3 Batch size

In our presentation of Kernel Flows Parametric in Chapter 2, we explained

that reducing the batch size could potentially increase performance by helping

avoiding local minima by increasing the variance of ρ. Here we provide evidence

that this is indeed the case. The table below compares some values obtained

between batch sizes. In all cases we used KF with the Gaussian kernel and

Nesterov momentum update.

Table 5.10: KF Parametric version for different batch sizes.

Method MSE MAE

KF diabetes, σ = 10, batch size 353 (full dataset) 2919.366 (2700.84) 43.603 (41.914)

KF diabetes, σ = 10, batch size 100 2911.321 (2664.77) 43.559 (41.593)

KF Red wine, σ = σ̂ batch size 500 0.537 (0.303) 0.552, (0.424)

KF Red wine, σ = σ̂, batch size 100 0.499 (0.322) 0.5421 (0.439)

KF White wine, σ = σ̂ batch size 500 0.662 (0.426) 0.616 (0.509)

KF White wine, σ = σ̂, batch size 100 0.603, (0.444) 0.596, (0.521)

In some cases performance improved only slightly for smaller batches, but

in other cases, such as the wine data sets, the MSE decreases by 7-8% and the

MAE by 1.6-1.8%. Hence, recalling that increasing the batch size scales the
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computational costs cubically, it is strongly advisable to use small batch sizes.

5.2.4 Sample size

Overall, Kernel Flows parametric performs as well or better with dynamic sam-

pling: on the Boston Housing dataset, dynamic sampling improves the MSE of

standard KF by 6.5% for the Gaussian kernel. On the red wine dataset dynamic

sampling improves the MSE of the rational quadratic kernel by 10%.

However it is unclear if the good performance of the dynamic sampling is due

to the adaptive nature of the sample size or to the use of a smaller sample size in

general. Figure 5.1 illustrates how sometimes ρ (and the associated sample size)

does not radically evolve over time. Hence most of the success of this method

could stem from using a sample size smaller than 0.5. Nonetheless, the value

of ρ can provide a good means to an appropriate sample size, regardless of any

adaptation over time.

In some cases simply reducing the proportion of the batch used for the

sample leads to increase performance. In one run of the red wine dataset, using

a kernel defined as a linear combination of Gaussian kernels and with SGD as

the optimizer, reducing the proportion from 0.5 to 0.3 improved the MAE from

0.494 to 0.485, a reduction of 1.8%. Further reducing from 0.5 to 0.1 improved

the MAE to 0.468, a reduction of 5.3%. In general, using smaller proportion

performed the best when the chosen Kernel has poor initial performance or

when the Kernel has many different parameters to optimize.

The fact that the dynamic sample size method can improve on the standard

version of Kernel Flows indicates that the sample size is an important hyper-

parameter which should be tuned to the specific problem to be solved.

Figure 5.1: The sample size (left) and rho mean (right) for the Boston Housing

dataset
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5.2.5 Kernel Flows Non-Parametric

Overall performance

Overall, Kernel Flows non-parametric version performs more poorly than both

Kernel Flows parametric and regular kernel regression, even when the base

kernel is optimized through Kernel Flows parametric. This is despite the fact

that rho does get minimized through the algorithm (see Figure 5.2). There are

several possible explanations.

First, we might be using batches which are too small: for the wine dataset,

due to computational constraints, we used either batches of size 100 for 10000

iterations or batches of size 300 for 1000 iterations. We note that in all cases, the

larger batch always outperformed the smaller batch, despite fewer iterations.

Second, we might be using a number of iterations too small for the algorithm

to perform well. However, this seems unlikely since ρ significantly decreases in

our numerical experiments.

Third, the ε and regularization hyper-parameters might be incorrectly tuned.

We opted for a high level of regularization (10−2 in general) based on the per-

formance of the base kernel. We also used ε to be 1% or 0.1%. Changing these

values might improve performance, as was seen for the swiss roll dataset.

Finally, Kernel Flows Non-Parametric might not be well adapted to regres-

sion problems.

Figure 5.2: The value of ρ over time, for 10000 iteration with batch size 100

(left) and 1000 iterations with batch size 300 (right).

Kernel Flows Hybrid version

The hybrid version of Kernel Flows generally performs about as well as Ker-

nel Flows Non-Parametric, and sometimes better. Notably, for the white wine
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dataset, the MSE is improved by 8.3% and the MAE by 2.5%. In all other cases,

the performance is similar. This indicates that the hybrid version should be con-

sidered when using Kernel Flows as it presents a small increase in computational

cost, but can significantly improve the performance of the algorithm.

This is especially true if the parameters are not optimized through Kernel

Flows Parametric first. On the Boston Housing dataset, setting σ = σ̂, KF

non-parametric leads to a large errors: the MSE is 331.641 and the MAE is

14.833. Training the hybrid version of KF with the same parameters improves

the MSE by 18 % to 270.833 and the MAE by 12% to 13.036.

5.2.6 RBF network

In all cases, training using the Kernel Flows algorithm improves the performance

of the network. In the case of the Boston Housing Dataset, the MSE is reduced

by 72% and the MAE is improved by 55%. For the wine dataset, the MSE

are reduced by 22% / 27.5% and the MAE are improved the 6.4%/10%. For

the diabetes dataset however, the improvement is negligible. This shows that

Kernel Flows is an adequate training method for these types of networks.

However, overall the RBF networks trained in these experiments perform

worse than the simpler kernel regression with a single Gaussian kernel and Ker-

nel Flows Non-Parametric. These networks seem to overfit the data, as can be

seen from the very low training data errors, often 0. A method of regularization

is therefor required to make these networks work. The usual regularization pa-

rameter λ does not significantly change the test accuracy, even with high values.

One exception is the diabetes dataset where it performs better than all other

methods, perhaps because the relation is hard to capture through Kernel Re-

gression hence the added complexity of the RBF network improves performance

without overfitting. The improvement is small however.

5.2.7 Kernel Flows: limitations and shortcomings

While Kernel Flows does often improve the performance of the algorithms pre-

sented here, this is not always the case. The first example is in the case of Kernel

Flows Non-parametric, where despite ρ being minimized (see Figure 5.2), the

MSE and MAE are larger than with kernel regression with the original kernel.

However, this is not limited to the Non-parametric version of Kernel Flows.

Similar increase in MSE and MAE can be observed with the parametric versions

of Kernel Flows. We consider the Boston Housing dataset, and apply kernel
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flows with the Gaussian and Rational Quadratic kernels with the same setup

as described above. The Gaussian kernel is initilazed to σ = σMSD and the

rational quadratic kernel is initialized with α = 0.3, β = 1.0. The next table

and figure illustrate the results.

Table 5.11: KF Parametric version for the Boston Housing dataset.

Method MSE MAE

Gaussian Kernel, σ = σMSD 30.892 (11.78) 4.978 (3.825)

KF Gaussian Kernel, σ = σMSD 31.565 (12.056) 3.817 (2.398)

Rational quadratic Kernel, α = 0.3, β = 1.0 71.98 (0.0) 5.574 (0.0)

KF Rational quadratic Kernel, α = 0.3, β = 1.0 74.363 (0.0) 5.743 (0.0)

The MSE and MAE go up, albeit by small amounts and ρ does not get

minimized (see figures 5.4 and 5.3). A possible explanation is that both these

kernels are already highly optimal and hence that Kernel Flows cannot meaning-

fully improve the kernel. This explanation seems to fit rational quadratic kernel

(figure 5.3), where due to randomization of the batch/sample, the parameters

oscillate. This is another example of the importance of the initialization: either

the Kernel is already highly optimized (and hence cannot improve) or we are in

a local minima where the algorithm is stuck.

Figure 5.3: The parameter history (right) and ρ values (left) for the rational

quadratic kernel.

However, for the Gaussian kernel (figure 5.4), the σ parameter continually

increases from 144 to 151. It appears that the algorithm is continually mov-

ing the parameter in a direction, without improving ρ or the MSE/MAE. This
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could be due to the flatness of the ρ function observed in Section 2.3: the algo-

rithm pushes the parameters in direction of gradient descent without meaningful

improvement to either ρ or the MSE/MAE.

Figure 5.4: The parameter history (right) and ρ values (left) for the Gaussianc

kernel.
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Chapter 6

Conclusion

In this report we presented the Kernel Flows algorithm and explored its prop-

erties. In particular, we showed how the performance of the algorithm heavily

depends on ρ in the case of the Parametric version. We showed that this func-

tion was non-convex and that noisy observations flatten the function. To help

remedy this problem we proposed to use a smaller batches and smaller sample

sizes. We also showed how in the case of the Non-parametric version, the perfor-

mance of the algorithm is heavily dependent on the chosen hyper-parameters.

We then presented the theory of the RBF network and a proposed extension

which can be trained using Kernel Flows Parametric.

Finally we applied the algorithm to standard datasets. On these datasets

Kernel Flows Parametric generally performed the best, with the the proposals

formulated in Chapter 2 generally improving performance. There were some

notable exceptions where the performance worsened. We also showed that Ker-

nel Flows was effective in training our modified RBF network, even though the

overall performance of the network was in general poorer than the simpler Ker-

nel Regression. Kernel Flows Non-Parametric however did not perform as well

as Kernel Flows Parametric, which indicates the need for further research for

its applicability to Regression problems. It is important to note that a slightly

modified version of KF Non-parametric (presented in [12]) seems to be effective

in classification problems.
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