
ONE-SHOT LEARNING OF STOCHASTIC DIFFERENTIAL EQUATIONS

WITH COMPUTATIONAL GRAPH COMPLETION

MATTHIEU DARCY1, BOUMEDIENE HAMZI2, GIULIA LIVIERI3, HOUMAN OWHADI4,
AND PEYMAN TAVALLALI5

Abstract. We consider the problem of learning Stochastic Differential Equations of the form
dXt = f(Xt)dt + σ(Xt)dWt from one sample trajectory. This problem is more challenging
than learning deterministic dynamical systems because one sample trajectory only provides
indirect information on the unknown functions f , σ, and stochastic process dWt representing
the drift, the diffusion, and the stochastic forcing terms, respectively. We propose a simple
kernel-based solution to this problem that can be decomposed as follows: (1) Represent the
time-increment map Xt → Xt+dt as a Computational Graph in which f , σ and dWt appear
as unknown functions and random variables. (2) Complete the graph (approximate unknown
functions and random variables) via Maximum a Posteriori Estimation (given the data) with
Gaussian Process (GP) priors on the unknown functions. (3) Learn the covariance functions
(kernels) of the GP priors from data with randomized cross-validation. Numerical experiments
illustrate the efficacy, robustness, and scope of our method.

1. Introduction

The forecasting of a stochastic or a deterministic time series is a fundamental problem in, e.g.,
Econometrics or Dynamical Systems, which is commonly solved by learning and/or inferring a
stochastic or a deterministic dynamical system model from the observed data, respectively; see,
e.g., [31, 14, 15, 13, 45, 39, 2, 32, 4, 54, 30, 19, 50, 33, 22, 18, 40, 29], among many others.

1.1. On the kernel methods to forecasting time series. Among the various learning-
based approaches, methods based on kernels hold potential for considerable advantages over,
e.g., methods based on variants of artificial neural networks (ANNs), in terms of theoretical
analysis, numerical implementation, regularization, guaranteed convergence, automatization,
and interpretability; see, e.g., [16, 43]. In particular, Reproducing Kernel Hilbert Spaces (RKHS)
[17] have provided a strong mathematical foundations for studying dynamical systems [9, 24,
20, 23, 8, 25, 34, 35, 3, 36, 10, 11, 12, 26] and surrogate modeling (see, e.g., [49] for a survey).
Yet, the accuracy of these emulators hinges on the choice of the kernel; however, the problem of
selecting a good kernel has received less attention so far. Numerical experiments have recently
shown that when the time series is regularly [27] or is irregularly sampled [37], simple kernel
methods can successfully reconstruct the dynamics of prototypical chaotic dynamical systems
when kernels are also learned from data via Kernels Flows (KF), a variant of cross-validation
[42]. KF approach has then been applied to complex, large-scale systems, including geophysical
data [41, 52, 53], and to learning non-parametric kernels for dynamical systems [44].

1.2. On the learning of Stochastic Differential Equations (SDEs). While time series
produced by deterministic dynamical systems offer a direct observation of the vector-field (i.e.,
of the drift) driving those systems, those produced by SDEs only present an indirect observation
of the underlying drift, diffusion and stochastic forcing terms. A popular approach employed
to recover the drift and the diffusion of an SDE is the so-called Kramers-Moyal expansion; see,
e.g., [48, 22]. In this manuscript, we formulate the problem of learning stochastic dynamical
systems described by SDEs as that of completing a computation graph [43], which represents the
functional dependencies between the observed increments of the time-series and the unknown
quantities. Our approach to solving this Computational Graph Completion (CGC) problem can
be summarized as (1) replacing unknown functions and variables by Gaussian Processes (GPs),
and (2) approximating those functions by the Maximum a Posteriori (MAP) estimator of those

1

2 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

GPs given available data. The covariance kernels of these GPs are learned from data via a
randomized cross-validation procedure.

1.3. Outline of the article. Section 2 describes the problem we focus on this manuscript and
our proposed solution. Section 3 describes the MAP estimator for the GPs. Section 4 describes
the algorithm we propose to learn the kernels and the hyper-parameters, whereas Section 5
briefly presents the extension of the algorithm to the multivariate case. Sections 6 reports the
numerical results, whereas Section 7 displays additional plots.

2. Statement of the problem and proposed solution

We first describe the type of SDEs used here. We consider SDEs of the form:

dXt = f(Xt)dt+ σ(Xt)dWt (1)

with initial condition X0 = x0. In the previous equation, (Wt)t∈[0,T] denotes a Wiener process.
We assume that the process in Equation (1) is observed at discrete times tn, n = 1 . . . N , such
that the time intervals ∆tn := (tn+1 − tn) between observations Xn := Xtn of the time series
are small enough so that the following approximation holds:

Xn+1 = Xn + f(Xn)∆tn + σ(Xn)
√

∆tnξn + εn , (2)

where the i.i.d. random variables ξn
d∼ N (0, 1) represent Brownian Motion increments and the

i.i.d. random variables εn
d∼ N (0, λ) represent discretization noise/misspecification; henceforth,

the notation “
d∼ ” stands for “distributed as”. We seek to recover/approximate the unknown

functions f and σ from the data (X,Y) = {(Xn, Yn)}1≤n≤N , where

Yn := Xn+1 −Xn .

Therefore, the relation between Xn and Yn is given by our modeling assumption:

Yn = f(Xn)∆tn + σ(Xn)
√

∆tnξn + εn . (3)

2.1. The Computational Graph Completion problem. In general, a computational graph
is defined as a graph representing functional dependencies between a finite number of (not
necessarily random) variables and functions. We will use nodes to represent variables and arrows
to represent functions. We will color known functions in black and unknown functions in red.
Random variables are drawn in blue and primary variables as squares. We will distinguish nodes
used to aggregate variables by drawing them as circles. Multiple incoming arrows into a square
node are interpreted as a sum. Now, let f̄n := f(Xn) and σ̄n := σ(Xn) be two intermediate
(unobserved) variables. Equation (3) can thus be rewritten as:

Yn = f̄n∆tn + σ̄n
√

∆tnξn + εn. (4)

In particular, it can be represented as the following computational graph:

Xn f̄nσ̄n

∆tn

σ̄n
√
∆tnξn f̄n∆tn

ξn

Yn εn

fσ

We formulate now the learning problem in this manuscript as the problem of completing the
just displayed computational graph; see [43]. Let X1, . . . XN , Y1, . . . , YN and ∆t1, . . . ,∆tN be
the N observations data: our goal is to approximate the unknown functions f and σ from these

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 3

observations. In order to solve this problem, we will use the GP framework: we replace σ and f
by GPs and approximate them via MAP estimation given the data. More precisely, we assume

that f and σ are mutually independent GPs, with centered Gaussian priors f
d∼ GP(O,K), σ

d∼
GP(O,G) defined by the covariance functions/kernels K and G.

3. MAP estimator

Write f̄ for the vector with entries {f̄n}1≤n≤N and σ̄ for the vector with entries {σ̄n}1≤n≤N .
Observe that given σ̄ and f̄ , the identification of the functions f and σ reduces to two separate
simple kernel regression problems. We will therefore first focus on the estimation of f̄ and σ̄.
Since f and g are independent, f̄ = f(X) and σ̄ = σ(X) are conditionally (on X) independent.
We deduce that

p(f̄ , σ̄|Y,X) = p(Y |f̄ , σ̄, X)
p(f̄ |X)p(σ̄|X)

p(Y |X)
.

It follows that a MAP estimator of (f̄ , σ̄) is a minimizer of the loss

L1(f̄ , σ̄) := − ln
(
p(Y |X, f̄ , σ̄)p(f̄ |X)p(σ̄|X)

)
= (Y − Λf̄)T (Σ + λI)−1(Y − Λf̄) + f̄TK(X,X)−1f̄

+
∑N

n=1
ln(σ̄2

n∆tn) + σ̄TG(X,X)−1σ̄ .

(5)

where K(X,X) is the N ×N matrix with entries K(Xi, Xj), G(X,X) is the N ×N matrix with
entries G(Xi, Xj), Σ is the diagonal N ×N matrix with diagonal entries σ̄n

2∆tn, and Λ is the
diagonal N ×N matrix with diagonal entries ∆tn.

3.1. Recovery of f . First, observe that given σ̄, (5) is quadratic in f̄ and its minimizer in f̄ is

f̄∗ = K(X,X)(K(X,X) + Σ + λI)−1Y . (6)

Therefore f
d∼ GP(O,K) conditioned on (X, f(X) = f̄) is is normally distributed with (condi-

tional) mean

f∗(x) := K(x,X)(K(X,X) + Σ + λI)−1Y , (7)

and (conditional) covariance

K(x, x)−K(x,X)(K(X,X) + Σ + λI)−1K(X,x) . (8)

We therefore estimate f with f∗ =(7). Note that (7) and (8) can also be recovered by observing
that given σ̄, Equation (4) corresponds to a noisy regression problem, with noise coming from
two independent Gaussian variables. This is proved in Appendix A and it is an easy modification
of the proof presented in [7, Page 306]

3.2. Recovery of σ. Taking f̄ = f̄∗ =(7) in (5), the estimation of σ̄ reduces to the minimization
of the loss

L2(σ̄) := (Y − Λf̄∗)T (Σ + λI)−1(Y − Λf̄∗) +
∑N

n=1
ln(σ̄2

n∆tn) + σ̄TG(X,X)−1σ̄ . (9)

Write σ̄† for a minimizer of (9) obtained through a numerical optimization algorithm (e.g.,
gradient descent). Because the numerical approximation of σ̄† is noisy, we then further estimate
σ̄ as the mean of the Gaussian vector σ(X) conditioned on σ(X) = σ̄† +Z where the entries Zi
of the (noise) vector Z are i.i.d. Gaussian with variance γ. We therefore approximate σ̄ with

σ̄∗ = E[σ(X)|σ(X) + Z = σ̄†] = G(X,X)(G(X,X) + γI)−1σ†. (10)

and σ with

σ∗(x) = G(x,X)(G(X,X) + γI)−1σ̄† .

4 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

3.3. Alternating minimization. The natural approach to identification of σ̄† is to minimize
(with respect to σ̄) (9) with f̄∗ defined as the function (6) of σ̄. In our numerical experiments,
we employ an alternating minimization approach and alternate between minimizing (5) with
respect to f̄ and σ̄: we alternate between identifying f̄∗ = (6) and minimizing (9) with fixed f̄∗.

4. Learning the kernels and the hyperparameters

The accuracy of our approach depends on the on the kernels K,G and the hyperparameters
λ, γ of the observation noise and MAP recovery noise respectively. We select the kernels K,G
in a family of kernels parameterized by θk, θg, which we learn from data. Writing

θ := (θk, θg, λ, γ) , (11)

for the vector formed by all the hyperparameters of our approach, we learn θ through a robust-
learning cross-validation approach which we will now describe. Consider the set of all sets of
possible partitions of the training data DT with indices I into two mutually disjoint subsets of
equal size

A = {(Π,Πc)|Π ∪Πc = I,Π ∩Πc = ∅, |Π| = |I|
2
}. (12)

Write DΠ = (xj , yj)j∈Π for the set of points belonging to the first partition and DΠc =
(xj , yj)j∈Πc for the set of points belonging to the second set. Write E(Π,Πc) for the uniform

distribution over A. For (Π,Πc) ∈ A write L1(DΠc , f̄ , σ̄) for the MAP loss (5) calculated with
dataset DΠc . Write

L3(θ; f̄∗, σ̄∗,DΠ) = − ln p(YΠ|f̄∗, σ̄∗, XΠ)

=
∑

i

(Yi − f̄∗)2

2(σ̄∗i)
2

+
1

2
ln(σ̄∗i ,),

(13)

for the negative log likelihood of the validation data DΠ given f̄∗, σ̄∗. Our proposed cross-
validation approach is then to select θ∗ as

θ∗ = arg min
θ

E(Π,Πc){L3(θ; f̄∗, σ̄∗,DΠ}

subject to f̄∗, σ̄∗ = arg min
f̄ ,σ̄

L1(DΠc , f̄ , σ̄) (14)

Note that f̄∗, σ̄∗ are selected as described in Section 3. In practice, it is intractable to com-
pute E(Π,Πc){L3(θ; f̄∗, σ̄∗,DΠ} exactly. We instead approximate E(Π,Πc){L3} with the empirical
average

1

M

∑M

i=1
L3(θ; f̄∗i , σ̄

∗
i ,DΠi) (15)

where the (Πi,Π
c
i) are i.i.d. samples from P(Π,Πc) and f̄∗i , σ̄

∗
i = arg min

f̄ ,σ̄

L1(DΠc
i
, f̄ , σ̄). We use a

gradient free optimization algorithm to minimize (37) (see Subsection 4.1). This algorithm only
uses noisy observations (15) of the true loss.

The proposed cross-validation algorithm can be summarized as follows:

(1) Select a gradient-free optimization algorithm.

(2) At each iteration, given the hyperparameters θk, select M divisions of the data DT into
a training set DΠc

i
and a validation set DΠi .

(3) For each 1 ≤ i ≤M , recover f̄∗i , σ̄
∗
i using training data DΠc

i
using hyper-paramters θk.

(4) For each 1 ≤ i ≤M , compute the loss L3(θk; f̄∗i , σ̄
∗
i ,DΠi) and the empirical average (15).

(5) Minimize (15) with the gradient free optimization algorithm to select θk+1.

4.1. The active learning algorithm. We choose the Bayesian optimization algorithm [51],
where the loss function is modeled using a Gaussian Process with Matern kernel [47], imple-
mented in the scikit-optimize library in Python [1].

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 5

5. Multivariate case

We now examine the case where the SDE is multidimensional. In such a case

dXt = f(Xt)dt+ σ(Xt)dW t (16)

where Xt ∈ Rd, f : Rd 7→ Rd,σ : Rd 7→ Rd×m and W t = (W i
t)i≤m is a standard multivariate

Wiener process.
For simplicity, we place independent GP priors on each dimension, which is equivalent to

using a matrix-valued kernel with diagonal entries:

K(x, y) =

(
K1(x, y) 0

0 K2(x, y)

)
(17)

More generally, we may consider matrix valued kernels with non zero off-diagonals, but the
use of diagonal matrices is practical because it makes all optimization problem independent for
each dimension. Then the problem leads to d equations:

dXi
t = f(Xt)

idt+
∑d

j=1
σi,j(Xt)dW

j
t (18)

which can all be optimized independently. The optimal value of f̄(Xt) conditioned on σ̄ is given
by the posterior mean equation:

f̄(Xn)i = E[f(Xn)i] = Ki(Xn,X)(Ki(X,X) + Σi + λI)−1Y i (19)

where Σi =
∑

j Σj is the sum of the (diagonal) matrices with entries Σj
k,k = (σ̄(Xk)

j)2∆tk, 1 ≤
k ≤ N, 1 ≤ j ≤ d. On the other hand, the MAP estimate for can be computed jointly for all
entries of the matrix σi with entries σik as

arg min
σi

(Y i−Λf(X)i)T (Σi+λI)−1(Y i−Λf(X)i)+
∑N

k=1
ln(∆tk

∑d

i=1
(σik)

2)+
∑d

i=1
σi

T
Gi(X,X)−1σi.

(20)
Additional assumptions can be made regarding the structure of the noise values, such as

assuming that the noise is separate across all dimensions (i.e., σ is a diagonal matrix) or that
the diffusion function σ is identical across all dimensions (i.e., σ is a diagonal matrix with
identical values along the diagonals).

6. Numerical experiments.

In this section, we test our methodology on some toy example SDEs. Our numerical results
include comparisons with an initial guess of parameters and parameters obtained through neg-
ative log marginal likelihood minimization. We test the proposed methodology on the following
one dimensional SDEs:

dXt = (b−Xt)dt+ σdWt Vasicek model/OU process (21)

dXt = (b−Xt)dt+ σ
√
XtdWt CIR model (22)

dXt = b sin(Xt)dt+ σ|Xt|dWt Noisy sinusoidal (23)

dXt = µXtdt+ σXtdWt Geometric Brownian motion (GBM). (24)

In all cases except the noisy sinusoidal, we discretize the dynamics with a constant time step
∆t = 0.1. For the noisy sinusoidal, ∆t = 1. We use 100 points for training and 100 points for
testing.

We also apply our methodology to a two dimensional, fast-slow SDE of the form

dXt =
1

ε
f(Xt, Yt)dt+ σx

F (Xt, Yt)√
ε

dWt

dYt = g(Xt, Yt)dt+ σyG(Xt, Yt)dBt

(25)

6 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

In this case, we generate a trajectory of 10000 steps with ∆t = 0.001. We extract a sub-sequence
of length 1000, which is split into a training set of 500 points and a testing set of 500 points.
In all cases, λ is set to a very small value (1 × 10−10) as our modeling assumption is accurate
for these toy models. In all cases, we train on a single trajectory and predict future unobserved
points.

6.1. Benchmarks. We compare our method and optimized parameters with two baselines. A
first baseline that uses our method and unoptimized parameters; this method is labeled as
”initial guess”. The second baseline does not use our method to recover the drift and diffusion
separately but instead uses standard gaussian process regression with a white noise kernel. The
posterior distribution of the GP conditioned on the data provides a prediction for the mean (the
drift of the SDE) and the variance (the volatility of the sde). The parameters of the kernel are
optimized through the minimization of the negative log marginal likelihood. This method is
labeled as ”log marginal method” and uses the implementation present in [46]. The details are
presented in Appendices A and B. Note that a major drawback of this method is the assumption
that the noise σ(Xt) is identically distributed Gaussian noise, modeled through the white noise
kernel δ(xi − xj). Such an assumption is incorrect for some types of SDEs.

6.2. Metrics. To measure the performance of each method, we use three metrics. The first is
the likelihood of the model given the data of the test set defined as

L(M|(X,Y)) = − log(p(Y |M, X)) ∝
∑K

i

(Yi − f̄i)2

2σ̄2
i

+
1

2
log(σ̄2

i).

The other two metrics are the relative error of the test drift and volatility at the test points:

δf =
||f − f̄ ||
||f ||

δσ =
||σ − σ̄||
||σ||

where f is the vector of drift values at the test points (f)i = f(Xi) and f̄ is the vector of
prediction (f̄)i = f̄(Xi) (likewise for σ, σ̄). Note that in practice, only L(M|(X,Y)) may be
observed. We present δf , δσ to illustrate how a lower loss on the recovery of the drift and
volatility yield a lower loss on the likelihood.

6.3. Choice of kernels. In most cases, we opt for the squared exponential kernel:

K(xi, xj) = α2 exp

(
−||xi − xj ||

2

l2

)
.

Such a kernel is parametrized by two parameters, the variance α2 and the length scale l. Observe
that the mean of the predicted values f̄i do not depend on α, equation (19). Hence for the drift
function f̄ , such a parameter does not affect the prediction and without loss of generality we set
α = 1. For the diffusion function σ̄, while the predictive mean, Equation (10), does not depend
on α, the recovered values σi do depend on such a parameter, Equation (9). One can think of
such a value as indicating the strenght of the prior: as α → ∞, the prior term goes to 0 in
Equation (9), leading to a negligible prior. On the other hand, a small α leads to a stronger
prior. Therefore α is optimized for the diffusion function alone.

Thus, the hyper-parameters are

θ = (lf , ασ, lσ, γ)

and we set the search space to be

lf , lσ ∈ (0.1, 100)

ασ ∈ (1.0, 10.0)

γ ∈ (10−8, 101).

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 7

6.4. Ornstein–Uhlenbeck process. The discrete OU process is defined as:

Xn+1 −Xn = (b−Xn)∆t+ σ
√

∆tξn, X0 = x0 (26)

where ξn ∼ N (0, 1). We simulate two trajectories with parameters: b = 10, σ = 2.0 and initial
conditions x0 = 1.0, 8.0 respectively. The first trajectory is presented in figure 1. The results
of both methods are recorded in table 1 with the MSE on the train set in parenthesis and the
best results on the test set highlighted. The prediction on the first trajectory are presented in
Figures 2 and 3 (see also Figures 18 and 19 in Section 7).

Trajectory 1 Trajectory 2
L(M|Y) δf δσ L(M|Y) δf δσ

Initial guess 21.666 1.178 0.241 3.928 0.922 0.241
Log marginal method 8.388 0.578 0.0245 -1.418 0.789 0.105
Our method 7.820 0.378 0.0657 4.794 0.472 0.241

Table 1. Results on the OU process.

Figure 1. Trajectory 1 of the OU process: trajectory (left) and increments (right)

Figure 2. OU process, prediction of the drift on trajectory 1: marginal likeli-
hood (left) and our method (right).

6.5. CIR model. The CIR model is similar to the OU process but with a non-constant and
non-linear volatility:

Xn+1 −Xn = (b−Xn)∆t+ σ
√
Xn

√
∆tξn, X0 = x0

8 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

Figure 3. OU process, prediction of the volatility on trajectory 1.

where ξn
d∼ N (0, 1). We simulate one trajectories with parameters: b = 10, 8.0, σ = 0.2, 0.1 and

initial condition x0 = 9.0, 8.5. The results of both methods are recorded in table 2 with the best
results on the test set highlighted. The first trajectory with increments is presented in Figure
4 with the predicted drift and diffusion of both methods presented in Figures 5 and 6 (see also
Figures 20 and 21 in the Section 7).

Trajectory 1 Trajectory 2
L(M|Y) δf δσ L(M|Y) δf δσ

Initial guess 248.50 0.849 1.700 -76.717 2.197 3.675
Log marginal method -105.172 1.000 0.0332 -116.044 1.000 0.0332
Our method -105.903 0.825 0.0317 -116.497 0.896 0.0283

Table 2. Results on the CIR process.

Figure 4. Trajectory of the CIR process: trajectory (left) and increments (right)

6.6. Sinusoidal SDE. The noisy sinusoidal has dynamics governed by

Xn+1 −Xn = b sin(Xn)∆t+ σ|Xn|
√

∆tξn, X0 = x0 (27)

where ξn ∼ N (0, 1). We simulate two trajectories with parameters: b = 2.0, 1.5, σ = 0.2 and
initial conditions x0 = 0.1, 0.2 respectively. The results are presented in Table 3 with the
best results highlighted. The first trajectory with increments is presented in Figure 7 with the
predicted drift and diffusion of both methods presented in Figures 8 and 9.

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 9

Figure 5. CIR process, prediction of the drift on trajectory 1: marginal likeli-
hood (left) and our method (right)

Figure 6. CIR process, prediction of the volatility on trajectory 1. The basic
Gaussian process method has a constant volatility whereas our method is able to
model an evolving volatility function.

Trajectory 1 Trajectory 2
L(M|Y) δf δσ L(M|Y) δf δσ

Initial guess 11.553 0.455 53.981 53.981 0.326 0.304
Log marginal method 3.629 0.0481 0.251 4.205 0.112 0.209
Our method 8.185 0.0743 0.255 2.900 0.092 0.200

Table 3. Results on the Sinusoidal process.

6.7. Geometric Brownian Motion. The (discrete) GBM is generated by

Xn+1 −Xn = µXn∆t+ σXn

√
∆tξn, X0 = x0. (28)

We generate two trajectories, with parameters µ = 10.0, σ = 3.0, 1.5, x0 = 1.0 and ∆t = 0.001.
For this test, we use two linear kernels of the form

K(x, y) = 〈x, y〉+ a (29)

for both the drift and diffusion. The results for both trajectories are reported in table 4 with
the predicted drift and diffusion of trajectory 2 presented in Figures 10, 11, 12 (see Figures 24,
11, 12 in the Appendix for trajectory 1).

6.8. Fast Slow SDE. We consider the Van der Pol oscillator as as an example of a fast slow
SDE (25).

dXt =
1

ε
f(Xt, Yt)dt+ σx

F (Xt, Yt)√
ε

dWt

dYt = g(Xt, Yt)dt+ σyG(Xt, Yt)dBt

(30)

10 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

Figure 7. Trajectory of the Sinusoidal SDE: trajectory (left) and increments (right)

Figure 8. Sinusoidal process, drift prediction trajectory 1: marginal likelihood
method (left) and our method (right)

Figure 9. Sinusoidal process, volatility prediction on trajectory 1.

Trajectory 1 Trajectory 2
L(M|Y) δf δσ L(M|Y) δf δσ

Initial guess 4.537 2.887 0.0271 67.691 0.429 0.302
Log marginal method 8393.935 1.006 0.917 445.721 0.379 0.655
Our method 4.444 2.873 0.0234 4.536 0.295 0.0106

Table 4. Results on the GBM process with the linear kernel.

6.8.1. Van der Pol oscillator 1. We first consider the case where

f(x, y) = y − 27

4
x2(x+ 1)

g(x, y) = −1

2
− x

F = G = 1

ε = 0.01, σx = σy = 0.1

(31)

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 11

Figure 10. Trajectory of the second trajectory of GBM: trajectory (left) and
increments (right)

Figure 11. GBM process, drift prediction trajectory 2: marginal likelihood
method (left) and our method (right)

Figure 12. GBM process, volatility prediction on trajectory 2.

In this case, there is only one source of noise which is constant. We model this system using 4
SE kernels, 2 for each dimension, one per drift and diffusion. The results are presented in table
5. The trajectory is presented in Figure 13 and the drift and volatility predictions are presented
in Figures 14 and 15.

6.8.2. Van der Pol oscillator 2. The second Van der Pol oscillator we consider is given by

12 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

Xt Yt
L(M|Y) δf δσ L(M|Y) δf δσ

Initial -1410.720 0.262 0.538 -10.210 0.295 309.185
Log marginal -1383.57 1.0171 0.188 -2601.48 0.243 0.00563
Our method -1288.90 0.180 0.343 -2596.06 0.357 0.0819

Table 5. Results on the stochastic Van der Pol 1.

Figure 13. Stochastic Van der Pol 1.

Figure 14. Stochastic Van der Pol 1: predictions on the drift (drift Xt top,
drift Yt bottom): comparison between maximizing the marginal likelihood (left)
and our method (right).

f(x, y) = y − 27

4
x2(x+ 1)

g(x, y) = −1

2
− x

F (x, y) = sin(x)

G(x, y) = cos(y)

ε = 0.01, σx = σy = 0.05.

(32)

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 13

Figure 15. Stochastic Van der Pol 1: prediction of the volatility, F (Xt, Yt) (left)
and G(Xt, Yt) (right).

This model has a more complex volatility source than the previous. The results are presented
in Table 6. The trajectory is presented in Figure 27 and the drift and volatility predictions are
presented in Figures 16 and 17.

Xt Yt
L(M|Y) δf δσ L(M|Y) δf δσ

Initial -1741.38 0.558 3.204 -3.339 0.204 905.007
Log marginal -1975.964 1.004 2.069 -2843.491 0.322 2.069
Our method -2090.291 0.357 0.479 -3138.301 0.209 0.4913

Table 6. Results on the stochastic Van der Pol 2.

Figure 16. Stochastic Van der Pol 2: predictions on the drift (drift Xt top,
drift Yt bottom): comparison between maximizing the marginal likelihood (left)
and our method (right).

14 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

Figure 17. Stochastic Van der Pol 2: prediction of the volatility, F (Xt, Yt) (left)
and G(Xt, Yt) (right).

6.9. Comments on the results. We make three observations regarding our results.
The first is that the randomized cross-validation algorithm for hyper-parameter optimization

reliably improves the performance of our method. In all cases, the selected parameters have
better performance compared to the initial guess, as measured by the likelihood of the model.
Second, we observe that our method provides comparable or greater performance compared to
simple kernel regression with hyper-parameters optimized through the minimization of the log
marginal likelihood. Which method is preferable depends on the underlying SDE. We observe
that for SDEs with constant volatility functions, such as the Ornstein–Uhlenbeck process or
the first Van der Pol oscillator, the simple kernel regression generally outperforms our method
as measured by the likelihood. This is likely due to the better recovery of the volatility as
the modeling assumption of the kernel regression (i.i.d. noise) better captures the true model
(constant volatility). Nonetheless, our method does occasionally outperform kernel regression in
predicting the drift of the SDE. Our method, however, notably outperforms kernel regression for
SDEs with non-constant volatility, such as the Cox–Ingersoll–Ross model, Geometric Brownian
motion, and the second Van der Pol oscillator. In such cases, our model better captures the true
volatility, including its trend (see for example figures 6 and 12). In the case of the sinusoidal
process, kernel regression outperforms our model on trajectory 1, whereas our model outperforms
kernel regression on trajectory 2. We hypothesize that this is due to the greater magnitude of
the volatility for trajectory 2, which implies that accurately modeling the volatility is more
important to capture the behavior of the SDE. Finally, we observe that a better likelihood
generally implies a better capture of the drift and volatility. Hence, while these quantities are
unobserved, better performance as measured by the likelihood generally implies that the model
captures well both the drift and volatility. Exceptions generally occur when the volatility drives
the evolution more than the drift (see, for example, the Geometric Brownian motion trajectory
1).

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 15

7. Additional Plots.

7.1. OU process. Additional plots for the Ornstein–Uhlenbeck process.

Figure 18. OU process, prediction of the drift on trajectory 2: marginal likeli-
hood (left) and our method (right).

Figure 19. OU process, prediction of the volatility on trajectory 1 (left) and
trajectory 2 (right).

7.2. CIR model. Additional plots for the Cox–Ingersoll–Ross process.

Figure 20. CIR process, prediction of the drift on trajectory 2: marginal like-
lihood (left) and our method (right)

16 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

Figure 21. CIR process, prediction of the volatility on trajectory 2. The base
Gaussian process method has a constant volatility whereas our method is able to
model an evolving volatility function.

7.3. Sinusoidal process. Additional plots for the sinusoidal process.

Figure 22. Sinusoidal process, drift prediction trajectory 2: marginal likelihood
method (left) and our method (right)

Figure 23. Sinusoidal process: volatility prediction, trajectory 1 (left), trajec-
tory 2 (right).

7.4. Geometric Brownian motion. Additional plots for the Geometric Brownian motion
process.

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 17

Figure 24. Trajectory of the first trajectory of GBM: trajectory (left) and in-
crements (right)

Figure 25. GBM process, drift prediction trajectory 1: marginal likelihood
method (left) and our method (right)

Figure 26. GBM process, volatility prediction on trajectory 2.

7.5. Fast slow SDE. Additional plots for the fast-slow SDE.

18 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

Figure 27. Stochastic Van der Pol 2.

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 19

Appendix A. Gaussian Process Regression and Extension of [7, Page 306]

In this section, we give a very brief overview of Gaussian processes for regression. We suppose

that the values of Y (X) are distributed according to a Gaussian process, namely Y (X)
d∼

GP(O,K). In particular, in the case of SDEs, given the data (X,Y), the predicted drift and
diffusion for a new point x∗ are given by

f̄(x∗) = K(x∗, X)K(X,X)−1Y

σ̄(x∗) = K(x∗, x∗)−K(x∗, X)K(X,X)−1K(X,x∗)

The above expression are valid in the case of noisy observation with independent and identical
Gaussian noise. Now, we derive these distribution in the case where the observations are noisy
with independent, but not necessarily identical, Gaussian noise; the proof is generalized from
the one presented in [7, 306].

Formally, suppose that we have at our disposal the noisy observations (Xn, Yn)1≤n≤N , where
Yi = f(Xi)+Wi and theWi are independent but not necessarily identically distributedN (0, σ2(Xi))
random variables. The problem is the identification of the unknown function f given these noisy
observations. Set fi = f(Xi), so that f := (fi)1≤i≤N . In addition, set Y := (Yi)1≤i≤N . Observe

that Y |f d∼ N (f ,Σ) where (Σ)ij = δijσ
2(Xi), and assume that f

d∼ N (0,K). Then, [7, Page
93],

p(Y) =

∫
p(Y |f)p(f)df = N (0,K + Σ).

Now, let C = K + Σ so that Cij = k(Xi, Xj) + σ2
i δij . Denote Y N+1 = (Y1, ..., YN+1), Y N =

(Y1, ..., YN). We wish to derive the conditional distribution p(YN+1|Y N). First observe that

p(Y N+1) = N (0,CN+1).

where CN+1 is the (N + 1) × (N + 1) with entries defined as previously for the vector Y N+1.
We may partition the covariance matrix as

CN+1 =

(
CN K

KT c

)
where c = K(XN+1, XN+1) + σ2

N+1 and K is the vector with entries Ki = K(XN+1, Xi). Then

p(YN+1|Y N) = N (m(XN), σ2(XN)) and the conditional mean and covariance are given by

m(XN+1) = K
T
C−1yN = K

T
(K + Σ)−1yN

σ2(XN) = c−KT
C−1K = c−KT

(K + Σ)−1K.

Appendix B. Log-marginal likelihood for hyper-parameter optimization

In this section, we briefly present the log-marginal likelihood method for hyper-parameter
optimization. The marginal log-likelihood over the kernel parameters can be expressed as:

− log(p(Y |θ, X)) ∝ 1

2
Y TK(X,X)−1Y + log(|K(X,X)|).

Therefore, the optimal parameters θ are obtained via the minimization of the function in the
previous equation (with respect to θ). In the case of noisy observations, the kernel K can be
defined as

K(X1, X2) = K
′
(X1, X2) + δ(X1, X2)

where K ′ is a standard kernel and δ is the white noise kernel defined as

δ(X1, X2) :=

{
c if X1 = X2,

0 otherwise,

20 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

where c is the noise level, a kernel parameter that must be optimized. It is important to note
that this kernel can only account for a constant level of noise, which is not the case for many
SDEs.

Appendix C. Randomized cross-validation for hyper-parameter learning

In this section, we describe the general framework of Randomized cross-validation we use in
our optimization.
The general problem is the following: we have a set of training data (X, Y) := {(Xi, Yi)}1≤i≤N
and we are trying to recover a function f : X → Y . In particular, we assume that we have
a class of functions S indexed by a set of parameters wp ∈ W, i.e. S := {f(· ,wp) : wp ∈
W and f(· ,wp) : X → Y }. Notice that in practice this could be approximated via reproducing
kernels as in this paper or via neural networks. We assume that we have a method to find the
optimal parameter w∗p ∈ W for a given training set of data (X, Y). In our case, we assume that
such a method involves the minimization of some loss function L(f(X,wp), Y) with respect to
wp, where L : Y × Y → R. Moreover, like in many Machine Learning (ML) algorithms, we
assume that we have a set of hyper-parameters θ ∈ Θ that affect the recovery of the optimal
f̂ ∈ S. Such hyper-parameters θ can parametrize the function f̂ := f̂θ := f(· ;wp,θ), regularize
the loss function L (often through some prior distribution on the parameters wp) or affect the
minimization of the loss L (such as the learning rate of a gradient descent). We summarize this

point by saying that f̂ is recovered by minimizing Lθ.
In the present work, in order to recover the function f : X → Y , we apply the Robust Learning
Algorithm, whose rationale is explained in the following paragraph.
Robust Learning Algorithm via Randomized cross-validation. Many ML algorithms are
built upon minimizing a loss function L : Y ×Y → R over the set of parameters (wp,θ) of a class

of models f̂ (· ,wp;θ). In other words, ideally, we can define the risk function R as the expected
value of the loss function L with respect to the data probability density function p (x, y):

R (wp,θ) := E(X,Y)∼p(x,y)

{
L
(
f̂(X,wp;θ), Y

)}
(33)

and then find the set of optimal parameters according to(
w∗p,θ

∗) := arg min
wp,θ

R (wp,θ) . (34)

Notice that, in this setup, by the assumption that one has access to p (x, y), there is no theoretical
distinction between parameters and hyper-parameters.
However, in practice, one only sees a realization of (X, Y), namelyD = {(Xi, Yi)}i∈I . Therefore,
it is impossible to use Equations (33) and (34). Moreover, in order to achieve generalization, in
practice wp is optimized by minimizing a loss function dependent on θ:

w∗p = arg min
wp

Lθ
(
f̂ (X;wp,θ) , Y

)
(35)

At this point, the best parameters θ can be chosen via a cross validation approach where the
function f̂θ is evaluated on an unseen test set (Xu, Yu):

R(θ) = L
(
f̂
(
Xu;w∗p,θ

)
, Yu

)
(36)

Generally, the optimization of hyper-parameters [5, 6, 28, 51, 38, 21] is usually done on a prefixed
number of cross validation sets. In this work, we propose an approach that is not bound to a
fixed number of cross validation sets. Our algorithm can be summarized as follows:

(1) Partition the available data D = {(Xi, Yi)}i∈I into a training subset DT = {(Xi, Yi)}i∈T
and a test subsets DU = {(Xi, Yi)}i∈U ; the two subsets are mutually exclusive.

(2) Randomly partition the training set DT into two mutually exclusive subsets of almost
equal size: D∏ = {(Xi, Yi)}i∈∏(T) and D∏c = {(Xi, Yi)}i∈∏c(T). Here,

∏
(T) returns

the first half of the random permutation of indices in T and
∏c (T) returns the second

half of the same permutation.

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 21

(3) Train a ML model on D∏ and evaluate the random loss on D∏c representing a realization
of the generalization error.

(4) Repeat steps (2) and (3) to optimize the expected loss over the random sets D∏c with
respect to wp.

(5) Check the goodness of fit by evaluating the loss over DU .

More precisely, the optimization problem is the following one:

θ∗ = arg min
θ

EΠ
{
RI−

∏ (w̄p,θ)
}

s.t. w̄p = arg min
wp

R∏ (wp,θ) .
(37)

Where,

R∏ (wp,θ) = EX,Y∼D∏ {Lθ (f̂ (X;wp,θ) , Y
)}

, (38)

and

RI−
∏ (wp,θ) = EX,Y∼D∏c

{
L
(
f̂ (X;wp,θ) , Y

)}
. (39)

In the previous Equations, EX,Y∼D∏ { . } means that the expected value is taken over the em-

pirical distribution defined by D∏. A similar notion applies to EX,Y∼D∏c { . }. Furthermore,

EΠ { . } means that this expected value is taken over all permutation of the train set. Note that
the recovery of w̄p is done through the minimization of Lθ which we refer to as the train loss

function, whereas the evaluation of f̂ (X;wp,θ) is done through L which we refer to as the test
loss function. The Robust Learning Algorithm is presented here below in (1):

Algorithm 1 Robust Learning Algorithm

Require:
(1) Pick a model class f̂θ
(2) Pick an initial guess θ(0).
(3) Pick an active learning algorithm Al.
(4) Set S = φ, n = 0 and C = 0.

Ensure: Partition the data D = {(xi, yi)}i∈I into two mutually exclusive training DT =
{(xi, yi)}i∈T and test subsets DU = {(xi, yi)}i∈U .
while C = 0 do

n← n+ 1
while 1 ≤ j ≤ K do

j ← j + 1
Pick a random index permutation

∏
n (T) of T .

Divide the train set DT into D∏
n

and D∏c
n
.

Train f̂
(
X;wp,θ

(n−1)
)

on D∏
n

with respect to R∏
n

(
wp,θ

(n−1)
)

to obtain w̄p.

Evaluate ej = RI−
∏

n

(
w̄p, ,θ

(n−1)
)

on D∏c
n
.

end while
Set RI−

∏
n

= 1
K

∑K
j=1 ej .

Set S ← S ∪
{(
θ(n−1), RI−

∏
n

(
w̄p, ,θ

(n−1)
))}

.

if Al (S) has converged then
C = 1(
w∗p,θ

∗) =
(
w̄p, ,θ

(n−1)
)

.

else if Al (S) has not converged then

θ(n) = Al (S)
end if

end while
Check the the loss over DU .

22 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

In particular, notice that RI−
∏

n
= 1

K

∑K
j=1 ej is a (noisy) approximation of

EX,Y∼D∏c

{
L
(
f̂ (X;wp,θ) , Y

)}
.

Acknowledgments. MD, BH, HO acknowledge partial support by the Air Force Office of Sci-
entific Research under MURI award number FA9550-20-1-0358 (Machine Learning and Physics-
Based Modeling and Simulation). MD, PT and HO acknowledge support from Beyond Limits
(Learning Optimal Models) through CAST (The Caltech Center for Autonomous Systems and
Technologies).

References

[1] Bayesian optimization with skopt. https://scikit-optimize.github.io/stable/auto_examples/

bayesian-optimization.html. Accessed: 2021-09-07.
[2] H. Abarbanel. Analysis of Observed Chaotic Data. Institute for Nonlinear Science. Springer New York, 2012.
[3] Romeo Alexander and Dimitrios Giannakis. Operator-theoretic framework for forecasting nonlinear time

series with kernel analog techniques. Physica D: Nonlinear Phenomena, 409:132520, 2020.
[4] Cedric Archambeau, Dan Cornford, Manfred Opper, and John Shawe-Taylor. Gaussian process approx-

imations of stochastic differential equations. In Neil D. Lawrence, Anton Schwaighofer, and Joaquin
Quiñonero Candela, editors, Gaussian Processes in Practice, volume 1 of Proceedings of Machine Learn-
ing Research, pages 1–16, Bletchley Park, UK, 12–13 Jun 2007. PMLR.

[5] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter opti-
mization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach. Learn. Res.,
13(null):281–305, feb 2012.

[7] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[8] Andreas Bittracher, Stefan Klus, Boumediene Hamzi, Péter Koltai, and Christof Schütte. Dimensionality

reduction of complex metastable systems via kernel embeddings of transition manifolds. 2019. https://

arxiv.org/abs/1904.08622.
[9] J. Bouvrie and B. Hamzi. Balanced reduction of nonlinear control systems in reproducing kernel hilbert

space. Proc. 48th Annual Allerton Conference on Communication, Control, and Computing, pages 294–301,
2010. https://arxiv.org/abs/1011.2952.

[10] Jake Bouvrie and Boumediene Hamzi. Empirical estimators for stochastically forced nonlinear systems: Ob-
servability, controllability and the invariant measure. Proc. of the 2012 American Control Conference, pages
294–301, 2012. https://arxiv.org/abs/1204.0563v1.

[11] Jake Bouvrie and Boumediene Hamzi. Kernel methods for the approximation of nonlinear systems. SIAM J.
Control and Optimization, 2017. https://arxiv.org/abs/1108.2903.

[12] Jake Bouvrie and Boumediene Hamzi. Kernel methods for the approximation of some key quantities of
nonlinear systems. Journal of Computational Dynamics, 1, 2017. http://arxiv.org/abs/1204.0563.

[13] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences,
113(15):3932–3937, 2016.

[14] Martin Casdagli. Nonlinear prediction of chaotic time series. Physica D: Nonlinear Phenomena, 35(3):335 –
356, 1989.

[15] Ashesh Chattopadhyay, Pedram Hassanzadeh, Krishna V. Palem, and Devika Subramanian. Data-driven
prediction of a multi-scale lorenz 96 chaotic system using a hierarchy of deep learning methods: Reservoir
computing, ann, and RNN-LSTM. CoRR, abs/1906.08829, 2019.

[16] Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Solving and learning nonlinear pdes
with gaussian processes. arXiv preprint arXiv:2103.12959, 2021.

[17] Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin of the American
Mathematical Society, 39:1–49, 2002.

[18] Felix Dietrich, Alexei Makeev, George Kevrekidis, Nikolaos Evangelou, Tom Bertalan, Sebastian Reich,
and Ioannis G. Kevrekidis. Learning effective stochastic differential equations from microscopic simulations:
combining stochastic numerics and deep learning, 2021.

[19] Noura Dridi, Lucas Drumetz, and Ronan Fablet. Learning stochastic dynamical systems with neural networks
mimicking the euler-maruyama scheme. CoRR, abs/2105.08449, 2021.

[20] B.Haasdonk ,B.Hamzi , G.Santin , D.Wittwar. Kernel methods for center manifold approximation and a
weak data-based version of the center manifold theorems. Physica D, 2021.

[21] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse gradient-
based hyperparameter optimization, 2017.

[22] Rudolf Friedrich, Joachim Peinke, Muhammad Sahimi, and M. Reza Rahimi Tabar. Approaching complexity
by stochastic methods: From biological systems to turbulence. Physics Reports, 506(5):87–162, 2011.

LEARNING DYNAMICAL SYSTEMS FROM DATA, SDES 23

[23] P. Giesl, B. Hamzi, M. Rasmussen, and K. Webster. Approximation of Lyapunov functions from noisy data.
Journal of Computational Dynamics, 2019. https://arxiv.org/abs/1601.01568.

[24] B. Haasdonk, B. Hamzi, G. Santin, and D. Wittwar. Greedy kernel methods for center manifold approxima-
tion. Proc. of ICOSAHOM 2018, International Conference on Spectral and High Order Methods, (1), 2018.
https://arxiv.org/abs/1810.11329.

[25] Boumediene Hamzi and Fritz Colonius. Kernel methods for the approximation of discrete-time linear au-
tonomous and control systems. SN Applied Sciences, 1(7):1–12, 2019.

[26] Boumediene Hamzi, Christian Kuehn, and Sameh Mohamed. A note on kernel methods for multiscale systems
with critical transitions. Mathematical Methods in the Applied Sciences, 42(3):907–917, 2019.

[27] Boumediene Hamzi and Houman Owhadi. Learning dynamical systems from data: A simple cross-validation
perspective, part i: Parametric kernel flows. Physica D: Nonlinear Phenomena, 421:132817, 2021.

[28] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In Carlos A. Coello Coello, editor, Learning and Intelligent Optimization, pages
507–523, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[29] Rob Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice. OTexts, Australia, 3rd edition,
2021.

[30] Saba Infante, César Luna, Luis Sánchez, and Aracelis Hernández. Approximations of the solutions of a sto-
chastic differential equation using dirichlet process mixtures and gaussian mixtures. Statistics, Optimization
amp; Information Computing, 4(4):289–307, Dec. 2016.

[31] Holger Kantz and Thomas Schreiber. Nonlinear Time Series Analysis. Cambridge University Press, USA,
1997.

[32] David Kleinhans and Rudolf Friedrich. Quantitative estimation of drift and diffusion functions from time
series data. In Joachim Peinke, Peter Schaumann, and Stephan Barth, editors, Wind Energy, pages 129–133,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[33] Yu Klimontovich. The reconstruction of the fokker-planck and master equations on the basis of experimental
data: H-theorem and s-theorem. International Journal of Bifurcation and Chaos, 3:113–, 02 1993.

[34] Stefan Klus, Feliks Nuske, and Boumediene Hamzi. Kernel-based approximation of the koopman generator
and schrödinger operator. Entropy, 22, 2020. https://www.mdpi.com/1099-4300/22/7/722.

[35] Stefan Klus, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia Clementi, and Christof Schütte.
Data-driven approximation of the koopman generator: Model reduction, system identification, and control.
Physica D: Nonlinear Phenomena, 406:132416, 2020.

[36] Andreas Bittracher, Stefan Klus, Boumediene Hamzi, Peter Koltai, and Christof Schutte. Dimension-
ality reduction of complex metastable systems via kernel embeddings of transition manifold, 2019.
https://arxiv.org/abs/1904.08622.

[37] Jonghyeon Lee, Edward De Brouwer, Boumediene Hamzi, and Houman Owhadi. Learning dynamical systems
from data: A simple cross-validation perspective, part iii: Irregularly-sampled time series, 2021.

[38] Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter optimization
through reversible learning, 2015.

[39] A. Nielsen. Practical Time Series Analysis: Prediction with Statistics and Machine Learning. O’Reilly Media,
2019.

[40] Manfred Opper. Variational inference for stochastic differential equations. Annalen der Physik,
531(3):1800233, 2019.

[41] Boumediene Hamzi , Romit Maulik, Houman Owhadi. Simple, low-cost and accurate data-driven geophysical
forecasting with learned kernels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 477(2252), 2021.

[42] H. Owhadi and G. R. Yoo. Kernel flows: From learning kernels from data into the abyss. Journal of Compu-
tational Physics, 389:22–47, 2019.

[43] Houman Owhadi. Computational graph completion. arXiv preprint arXiv:2110.10323, 2021.
[44] M. Darcy , B. Hamzi , J. Susiluo , A. Braverman , H. Owhadi. Learning dynamical systems from data: a

simple cross-validation perspective, part ii: nonparametric kernel flows. preprint, 2021.
[45] Jaideep Pathak, Zhixin Lu, Brian R. Hunt, Michelle Girvan, and Edward Ott. Using machine learning to

replicate chaotic attractors and calculate lyapunov exponents from data. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 27(12):121102, 2017.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[47] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005.

[48] H. Risken and H. Haken. The Fokker-Planck Equation: Methods of Solution and Applications Second Edition.
Springer, 1989.

[49] Gabriele Santin and Bernard Haasdonk. Kernel methods for surrogate modeling. 2019. https://arxiv.org/
abs/1907.105566.

24 M. DARCY, B. HAMZI, G. LIVIERI, H. OWHADI, AND P. TAVALLALI

[50] S Siegert, R Friedrich, and J Peinke. Analysis of data sets of stochastic systems. Physics Letters A, 243(5-
6):275–280, Jul 1998.

[51] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning
algorithms, 2012.

[52] Sai Prasanth , Ziad S Haddad , Jouni Susiluoto , Amy J Braverman , Houman Owhadi, Boumediene Hamzi ,
Svetla M Hristova-Veleva , Joseph Turk. Kernel flows to infer the structure of convective storms from satellite
passive microwave observations. preprint, 2021.

[53] Jouni Susiluoto , Amy Braverman , Philip G. Brodrick , Boumediene Hamzi , Maggie Johnson , Otto Lam-
minpaa , Houman Owhadi , Clint Scovel , Joaquim Texeira , Michael Turmon. Radiative transfer emulation
for hyperspectral imaging retrievals with advanced kernel flows-based gaussian process emulation. preprint,
2021.

[54] Cagatay Yildiz, Markus Heinonen, Jukka Intosalmi, Henrik Mannerstrom, and Harri Lahdesmaki. Learning
stochastic differential equations with gaussian processes without gradient matching. In 2018 IEEE 28th
International Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6, 2018.

1 Department of Computing and Mathematical Sciences, Caltech, CA, USA.
Email address: mdarcy@caltech.edu

4 Department of Computing and Mathematical Sciences, Caltech, CA, USA.
Email address: boumediene.hamzi@gmail.com

3 Scuola Normale Superiore, Pisa, Italy
Email address: giulia.livieri@sns.it

5Department of Computing and Mathematical Sciences, Caltech, CA, USA.
Email address: owhadi@caltech.edu

2 JPL, Caltech, CA, USA.
Email address: peyman.tavallali@jpl.nasa.gov

